On the noninferior index approach to large-scale multi-criteria systems. (English) Zbl 0363.90109


90C90 Applications of mathematical programming
93A15 Large-scale systems
Full Text: DOI


[1] Zadeh, L.A., Optimality and non-scalar-valued performance criteria, I.E.E.E. trans. aut. control, Vol. AC-8, 59-60, (Jan. 1963)
[2] Da Cunha, N.O.; Polak, E., Constrained minimization under vector-valued criteria in linear topological spaces, (), 96-108 · Zbl 0223.49012
[3] Starr, A.W.; Ho, Y.C., Nonzero-sum differential games, J. optimization theory applic., Vol. 3, No. 3, 184-206, (March 1969)
[4] Starr, A.W.; Ho, Y.C., Further properties of nonzero-sum differential games, J. optimization theory applic., Vol. 3, No. 4, 207-219, (April 1969)
[5] Major, D.C., Benefit-cost ratios for projects in multiple-objective investment programs, Water resources res., Vol. 5, No. 6, 1174-1178, (Dec. 1969)
[6] Athans, M.; Falb, P.L., Optimal control, (1966), McGraw-Hill New York · Zbl 0186.22501
[7] Citron, S.J., Elements of optimal control, (1969), Holt, Rinehart and Winston New York · Zbl 0167.39402
[8] Wilde, D.J.; Beightler, C.S., Foundations of optimization, (1967), Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0189.19702
[9] Reid, R.W.; Citron, S.J., On methods of calculating noninferior performance index vectors, () · Zbl 0204.46803
[10] Taylor, A., Advanced calculus, (1955), Ginn and Company Boston · Zbl 0067.02503
[11] Hestenes, M.R., Calculus of variations and optimal control theory, (1966), John Wiley New York · Zbl 0173.35703
[12] Duffin, R.J.; Peterson, E.L.; Zener, C., Geometric programming, (1967), John Wiley New York · Zbl 0171.17601
[13] Moran, P.A.P., A probability theory of a dam with continuous release, Quart. J. mathematics, Vol. 7, No. 26, 130-137, (June 1956), Oxford, Second Series
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.