zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical analysis of some three-species food-chain models. (English) Zbl 0363.92022

MSC:
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Albrecht, F.; Gatzke, H.; Haddad, A.; Wax, N.: The dynamics of two interacting populations. J. math. Anal. appl. 46, 658-670 (1974) · Zbl 0281.92012
[2] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G.: Qualitative theory of second-order dynamic systems. (1973) · Zbl 0282.34022
[3] Barclay, H.; Den Driessche, P. Van: Time lags in ecological systems. J. theor. Biol. 51, 347-356 (1975)
[4] Conrad, M.: Stability of foodwebs and its relation to species diversity. J. theor. Biol. 34, 325-335 (1972)
[5] De Angelis, D. L.: Stability and connectance in food web models. Ecology 56, 238-243 (1975)
[6] Freedman, H. I.: Graphical stability, enrichment, and pest control by a natural enemy. Math. biosci. 31, 207-225 (1976) · Zbl 0373.92023
[7] Freedman, H. I.; Waltman, P.: Perturbation of two-dimensional predator-prey equations. SIAM J. Appl. math. 28, 1-10 (1975) · Zbl 0313.92001
[8] Freedman, H. I.; Waltman, P.: Perturbation of two-dimensional predator-prey equations with an unperturbed critical point. SIAM J. Appl. math. 29, 719-733 (1975) · Zbl 0326.92002
[9] Gallopin, G. C.: Trophic similarity between species in a food web. Am. midwest. Nat. 87, 336-345 (1972)
[10] Goel, N. S.; Maitra, S. C.; Montrol, E. W.: On the Volterra and other nonlinear models of interacting populations. Rev. mod. Phys. 43, 231-276 (1971)
[11] Hausrath, A. R.: Stability properties of a class of differential equations modeling predator-prey relationships. Math. biosci. 26, 267-281 (1975) · Zbl 0326.92001
[12] Haussman, U. G.: Abstract food webs in ecology. Math. biosci. 11, 291-316 (1971) · Zbl 0224.92019
[13] Haynes, D. L.; Sisojevic, P.: Predatory behavior of philodromus rufus walckenaer (Araneae: thomisidae). Can. entomol. 98, 113-133 (1966)
[14] Holling, C. S.: Some characteristics of simple types of predation and parasitism. Can. entomol. 91, 385-398 (1959)
[15] Hsu, S. B.: A mathematical analysis of competition for a single resource. Ph.d. thesis (1976)
[16] S.B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., to be published. · Zbl 0354.92033
[17] Hubbell, S. P.: Populations and simple food webs as energy filters. I. one-species systems. Am. nat. 107, 94-121 (1973)
[18] Hubbell, S. P.: Populations and simple food webs as energy filters. II. two-species systems. Am. nat. 107, 122-151 (1973)
[19] Kerner, E. H.: On the Volterra-Lotka principle. Bull. math. Biophys. 23, 141-157 (1961) · Zbl 0124.36704
[20] May, R. M.: Stability and complexity in model ecosystems. (1973)
[21] May, R. M.: Mass and energy flow in closed ecosystems: a comment. J. theor. Biol. 39, 155-163 (1973)
[22] Smith, J. Maynard: Models in ecology. (1974) · Zbl 0312.92001
[23] Nemytskii, V. V.; Stepanov, V. V.: Qualitative theory of differential equations. (1960) · Zbl 0089.29502
[24] Rescigno, A.; Jones, K. G.: The struggle for life: III. A predator-prey chain. Bull. math. Biophys. 34, 521-532 (1972)
[25] Rosenzweig, M. L.: Exploitation in three tophic levels. Am. nat. 107, 275-294 (1973)
[26] Rosenzweig, M. L.; Macarthur, R. H.: Graphical representation and stability conditions of predator-prey interactions. Am. nat. 47, 209-223 (1963)
[27] Saunders, P. T.; Bazin, M. J.: On the stability of food chains. J. theor. Biol. 52, 121-142 (1975)
[28] Scudo, F. M.: Vito Volterra and theoretical ecology. Theoret. popul. Biol. 2, 1-23 (1971) · Zbl 0241.92001
[29] Yorke, J. A.; Jr., W. N. Anderson: Predator-prey patterns. Proc. nat. Acad. sci. USA 70, 2069-2071 (1973) · Zbl 0273.94028