Diaconis, Persi The distribution of leading digits and uniform distribution mod 1. (English) Zbl 0364.10025 Ann. Probab. 5, 72-81 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 57 Documents MSC: 11K06 General theory of distribution modulo \(1\) 60F05 Central limit and other weak theorems 11K99 Probabilistic theory: distribution modulo \(1\); metric theory of algorithms 11A63 Radix representation; digital problems 11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. PDF BibTeX XML Cite \textit{P. Diaconis}, Ann. Probab. 5, 72--81 (1977; Zbl 0364.10025) Full Text: DOI Online Encyclopedia of Integer Sequences: Powers of 2: a(n) = 2^n. Pascal’s triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.