×

zbMATH — the first resource for mathematics

Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. (English) Zbl 0364.35049

MSC:
35S05 Pseudodifferential operators as generalizations of partial differential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
47Gxx Integral, integro-differential, and pseudodifferential operators
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Calderon A, Proc. Nat.Acad. Sci. USA 69 (5) pp 1185– (1972) · Zbl 0244.35074
[2] Duistermaat J.J, Acta Math. 128 (5) pp 183– (1971)
[3] Egorov Yu.V., Mat. Sb. 78 (120) pp 148– (1969)
[4] Eskin G.L., Mat. Sb. 82 (124) pp 585– (1970)
[5] Hörmander L, Ann. of Math. 83 (124) pp 120– (1966)
[6] Hörmander L, Acta Math. 127 (124) pp 79– (1971) · Zbl 0212.46601
[7] Hörmander L, Lecture notes at the Nordic summer school of mathematics (1969)
[8] Kashiwara, M, Kawai, T and Sato, M. ”Microfunctions and pseudodifferential equations.”. Vol. 287, Springer Lecture Notes. Chap.II. · Zbl 0277.46039
[9] Kucherenko V.M, Mat. Sb. 95 (137) pp 163– (1974)
[10] Mazja V.G, Functional Anal.i Priloen 3 (137) pp 91– (1969)
[11] Melin, A and Sjögstrand, J. ”Fourier integral operators with complex–valued phase functions.”. Vol.459, 120–223. Springer Lecture Notes.
[12] Sjögstrand, J. ”Applications of Fourier distributions with cornpiex phase functions.”. Vol.459, 255–282. Springer Lecture Notes.
[13] Sjögstrand J, Acta Math. 130 (1973) pp 1–
[14] Winzell B., Linköping Studies in Science and Technology
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.