Melin, Anders; Sjöstrand, Johannes Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. (English) Zbl 0364.35049 Commun. Partial Differ. Equations 1, 313-400 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 33 Documents MSC: 35S05 Pseudodifferential operators as generalizations of partial differential operators 58J40 Pseudodifferential and Fourier integral operators on manifolds 47Gxx Integral, integro-differential, and pseudodifferential operators 35J25 Boundary value problems for second-order elliptic equations PDF BibTeX XML Cite \textit{A. Melin} and \textit{J. Sjöstrand}, Commun. Partial Differ. Equations 1, 313--400 (1976; Zbl 0364.35049) Full Text: DOI OpenURL References: [1] Calderon A, Proc. Nat.Acad. Sci. USA 69 (5) pp 1185– (1972) · Zbl 0244.35074 [2] Duistermaat J.J, Acta Math. 128 (5) pp 183– (1971) [3] Egorov Yu.V., Mat. Sb. 78 (120) pp 148– (1969) [4] Eskin G.L., Mat. Sb. 82 (124) pp 585– (1970) [5] Hörmander L, Ann. of Math. 83 (124) pp 120– (1966) [6] Hörmander L, Acta Math. 127 (124) pp 79– (1971) · Zbl 0212.46601 [7] Hörmander L, Lecture notes at the Nordic summer school of mathematics (1969) [8] Kashiwara, M, Kawai, T and Sato, M. ”Microfunctions and pseudodifferential equations.”. Vol. 287, Springer Lecture Notes. Chap.II. · Zbl 0277.46039 [9] Kucherenko V.M, Mat. Sb. 95 (137) pp 163– (1974) [10] Mazja V.G, Functional Anal.i Priloen 3 (137) pp 91– (1969) [11] Melin, A and Sjögstrand, J. ”Fourier integral operators with complex–valued phase functions.”. Vol.459, 120–223. Springer Lecture Notes. [12] Sjögstrand, J. ”Applications of Fourier distributions with cornpiex phase functions.”. Vol.459, 255–282. Springer Lecture Notes. [13] Sjögstrand J, Acta Math. 130 (1973) pp 1– [14] Winzell B., Linköping Studies in Science and Technology This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.