×

zbMATH — the first resource for mathematics

A potential operator and some ergodic properties of a positive \(L_\infty\) contraction. (English) Zbl 0364.60115
MSC:
60J45 Probabilistic potential theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47A45 Canonical models for contractions and nonselfadjoint linear operators
47A35 Ergodic theory of linear operators
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] J. Deny , Les noyaux élémentaires, Séminaire de Théorie du Potential (directed by M. BRELOT, G. CHOQUET, AND J. DENY), Institut Henri Poincaré , Paris , 4e année, 1959-1960 . Numdam · numdam:SBCD_1959-1960__4__A4_0
[2] S.R. Foguel , The Ergodic Theory of Markov Processes . New York , Van Nostrand Reinhold , 1969 . MR 261686 | Zbl 0282.60037 · Zbl 0282.60037
[3] S.R. Foguel , More on The Ergodic Theory of Markov Processes . University of British Columbia Lecture Notes , Vancouver , 1973 .
[4] S.R. Foguel , Ergodic Decomposition of a Topological Space . Israel J. Math. , t. 7 , 1969 , p. 164 - 167 . MR 249570 | Zbl 0179.08302 · Zbl 0179.08302 · doi:10.1007/BF02771663
[5] S. Horowitz , Markov Processes on a Locally Compact Space . Israel J. Math. , t. 7 , 1969 , p. 311 - 324 . MR 264759 | Zbl 0216.47102 · Zbl 0216.47102 · doi:10.1007/BF02788864
[6] M. Lin , Conservative Markov Processes on a Topological Space . Israel J. Math. , t. 8 , 1970 , p. 165 - 186 . MR 265559 | Zbl 0219.60005 · Zbl 0219.60005 · doi:10.1007/BF02771312
[7] P.A. Meyer , Probability and Potentials . Waltham , Massachusetts , Blaisdell Publishing Company , 1966 . MR 205288 | Zbl 0138.10401 · Zbl 0138.10401
[8] J. Neveu , Mathematical Foundations of the Calculus of Probability . San Francisco , Holden-Day , 1965 . MR 198505 | Zbl 0137.11301 · Zbl 0137.11301
[9] H.H. Schaefer , Invariant Ideals of Positive Operators in C(X), I . Illinois J. Math. , t. 11 , 1967 , p. 701 - 715 . Article | MR 218912 | Zbl 0168.11801 · Zbl 0168.11801 · minidml.mathdoc.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.