×

zbMATH — the first resource for mathematics

A characterization of the invariant measures for an infinite particle system with interactions. II. (English) Zbl 0364.60118

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
47A35 Ergodic theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard Holley, A class of interactions in an infinite particle system, Advances in Math. 5 (1970), 291 – 309 (1970). · Zbl 0219.60054 · doi:10.1016/0001-8708(70)90035-6 · doi.org
[2] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. · Zbl 0149.13301
[3] Thomas M. Liggett, A characterization of the invariant measures for an infinite particle system with interactions, Trans. Amer. Math. Soc. 179 (1973), 433 – 453. · Zbl 0268.60090
[4] Thomas M. Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc. 165 (1972), 471 – 481. · Zbl 0239.60072
[5] Frank Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246 – 290 (1970). · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4 · doi.org
[6] Frank Spitzer, Recurrent random walk of an infinite particle system, Trans. Amer. Math. Soc. 198 (1974), 191 – 199. · Zbl 0321.60087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.