×

zbMATH — the first resource for mathematics

Euler characteristics and characters of discrete groups. (English) Zbl 0365.20008

MSC:
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
20J06 Cohomology of groups
20J05 Homological methods in group theory
20F40 Associated Lie structures for groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bass, H.: AlgebraicK-theory. New York: W. A. Benjamin 1968 · Zbl 0174.30302
[2] Bass, H., Lazard, M., Serre, J-P.: Sous-groupes d’indice fini dansSL(n,?). Bull. AMS70, 385-392 (1964) · Zbl 0232.20086
[3] Borel, A.: Linear algebraic groups. New York: W. A. Benjamin 1969 · Zbl 0206.49801
[4] Bourbaki, N.: Alg?bre. Chap. 1-3. Paris: Hermann 1970 · Zbl 0211.02401
[5] Bourbaki, N.: Alg?bre, Chap. 8. Modules et anneaux semi-simples. Paris: Hermann 1958 · Zbl 0102.27203
[6] Brown, K. S.: Euler characteristics of discrete groups andG-spaces. Inventiones math.27, 229-264
[7] Burns, R. G.: Central idempotents in group rings. Can. Math. Bull.13, 527-528 (1970) · Zbl 0209.33401
[8] Chiswell, I. M.: Euler characteristics of groups. Submitted to Math. Z. · Zbl 1143.20310
[9] Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Wiley Interscience No. XI (1962) · Zbl 0131.25601
[10] Dyer, E., Vasquez, A. T.: An invariant for finitely generated projectives over?G. To appear in J. of Pure and Appl. Algebra · Zbl 0326.16010
[11] Formanek, E.: Idempotents in noetherian group rings. Can. J. Math.XXV, 366-369 (1973) · Zbl 0252.16003
[12] Gruenberg, K. W.: Cohomological topics in group theory. Lecture Notes in Mathematics143, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0205.32701
[13] Hattori, A.: Rank element of a projective module. Nagoya J. Math. 113-120 (1965) · Zbl 0142.28001
[14] Hochster, M., Roberts, J. L.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math.13, 115-175 (1974) · Zbl 0289.14010
[15] Jacobson, N.: Lie algebras. New York: Wiley Interscience No. 11 (1962) · Zbl 0121.27504
[16] Lang, S.: Diophantine geometry. New York: Wiley Interscience No. 11 (1962) · Zbl 0115.38701
[17] Lang, S.: Algebraic numbers. Reading: Addison-Wesley (1970) · Zbl 0211.38404
[18] Matsumura, H.: Commutative algebra. New York: W. A. Benjamin 1970 · Zbl 0211.06501
[19] Susan Montgomery, M.: Left and right inverses in group algebras. Bull. AMS75, 539-540 (1969) · Zbl 0174.31204
[20] Sehgal, S. K.: Certain algebraic elements in group rings. Arch. d. Math.26, 139-143 (1975) · Zbl 0322.20002
[21] Serre, J-P.: Repr?sentation lin?aires des groupes finis. Collection Methodes. Paris: Hermann 1967
[22] Serre, J-P.: Corps locaux. Paris: Hermann 1968
[23] Serre, J-P.: Le probleme des groupes de congruence pourSL 2. Ann. Math.92, 489-527 (1970) · Zbl 0239.20063
[24] Serre, J-P.: Cohomologie des groupes discrets, Ann. Math. Studies 70. Princeton Univ. Press 77-169 (1971) · Zbl 0229.57016
[25] Stallings, J. R.: Centerless groups?an algebraic formulation of Gottlieb’s theorem. Topology4, 129-134 (1965) · Zbl 0201.36001
[26] Swan, R. G.: Induced representations and projective modules. Ann. Math.71, 552-578 (1960) · Zbl 0104.25102
[27] Zalesskii, A. E.: On a problem of Kaplansky (Russian). Dokl. Akad. Nauk. SSSR203, 749-751 (1972); Soviet Math. Dokl.13, 449-452 (1972) · Zbl 0257.16010
[28] Passman, D.: Advances in group rings. Israel J. of Math.19, 67-107 (1974) · Zbl 0298.16010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.