Reflection of \(C^\infty\) singularities for a class of operators with multiple characteristics. (English) Zbl 0365.35050


35S10 Initial value problems for PDEs with pseudodifferential operators
35A20 Analyticity in context of PDEs
Full Text: DOI


[1] Chazarain, J., Operateurs hyperboliques a caracteristiques de multiplicite constante, Ann. Inst. Fourier, 24 (1974), 173-202. · Zbl 0274.35045 · doi:10.5802/aif.497
[2] Chazarain, J., Propagation des singularites pour une classe d’operateurs a carac- teristiques multiples et resolubilite locale, Ann. Inst. Fourier, 24 (1974), 203-223. · Zbl 0274.35007 · doi:10.5802/aif.498
[3] Hormande, L., Pseudo-differential operators and non elliptic boundary problem, Ann. of Math., 83 (1966), 129-209. · Zbl 0132.07402 · doi:10.2307/1970473
[4] Hormander, L., Fourier Integral Operators I, Acta Math., 127 (1971), 79-183.
[5] Majda, A. and Osher, S., Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), 479-499. · Zbl 0307.35077 · doi:10.1002/cpa.3160280404
[6] Nirenberg, L., Lectures on linear partial differential equations, Regional Conf. series in Math, NO 17, A.M.S., (1973). · Zbl 0267.35001
[7] Taylor, M., Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math., 28 (1975), 457-478. · Zbl 0332.35058 · doi:10.1002/cpa.3160280403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.