zbMATH — the first resource for mathematics

The general complex case of the Bernstein-Nachbin approximation problem. (English) Zbl 0365.41007

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46E25 Rings and algebras of continuous, differentiable or analytic functions
30E10 Approximation in the complex plane
Full Text: DOI Numdam EuDML
[1] E. BISHOP, A generalization of the stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. · Zbl 0104.09002
[2] I. GLICKSBERG, Measures orthogonal to algebras and sets of antisymmetry, Trans, Amer. Math. Soc., 105 (1962), 415-435. · Zbl 0111.11801
[3] R.I. JEWETT, A variation on the stone-Weierstrass theorem, Proc. Amer. Math. Soc., 14 (1963), 690-693. · Zbl 0122.35004
[4] G. KLEINSTUCK, Der beschränkte fall des gewichteten approximationsproblems für vektorwertige funktionen, Manuscripta Math., 17 (1975), 123-149. · Zbl 0343.41033
[5] L. NACHBIN, On the priority of algebras of continuous functions in weighted approximation, to appear in Symposia Mathematica. · Zbl 0338.41034
[6] L. NACHBIN, Elements of approximation theory, D. van Nostran Co., Inc., 1967. Reprinted by R. Krieger Co., Inc., 1976. · Zbl 0173.41403
[7] L. NACHBIN, S. MACHADO, and J.B. PROLLA, Weighted approximation, vector fibrations, and algebras of operators, Journal Math. Pures et appl., 50 (1971), 299-323. · Zbl 0238.46041
[8] J.B. PROLLA, Bishop’s generalized stone-Weierstrass theorem for weighted spaces, Math. Ann., 191 (1971), 283-289. · Zbl 0202.12603
[9] W. RUDIN, Real and complex analysis, McGraw-Hill, New York, 1966. · Zbl 0142.01701
[10] W.H. SUMMERS, Weighted approximation for modules of continuous functions II, in “Analyse fonctionnelle et applications” (Editor L. Nachbin), Hermann, Paris, 1975, p. 277-283. · Zbl 0321.41029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.