On Banach spaces which contain \(\ell^1(\tau)\) and types of measures on compact spaces. (English) Zbl 0365.46020


46B99 Normed linear spaces and Banach spaces; Banach lattices
28A10 Real- or complex-valued set functions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI


[1] Erdös, P.; Rado, R., Intersection theorems for systems of sets, J. London Math. Soc., 35, 85-90 (1960) · Zbl 0103.27901 · doi:10.1112/jlms/s1-35.1.85
[2] Hagler, J., On the structure of S and C(S) for S dyadic, Trans. Amer. Math. Soc., 214, 415-428 (1975) · Zbl 0321.46022 · doi:10.2307/1997116
[3] J. Hagler,A counterexample to several questions about Banach spaces, to appear. · Zbl 0387.46015
[4] Hagler, J.; Stegall, C., On Banach spaces whose duals contain complemented subspaces isomorphic to C[0, 1]^∗, J. Functional Analysis, 13, 233-251 (1973) · Zbl 0265.46019 · doi:10.1016/0022-1236(73)90033-5
[5] I. Juhasz,Cardinal functions in topology, Mathematical Centre Tracts34, Amsterdam, 1971. · Zbl 0224.54004
[6] Peŀczyński, A., On Banach spaces containing L^1(μ), Studia Math., 30, 231-246 (1968) · Zbl 0159.18102
[7] Rosenthal, H. P., On injective Banach spaces and the spaces L^∞ (μ) for finite measures μ, Acta Math., 124, 205-248 (1970) · Zbl 0207.42803 · doi:10.1007/BF02394572
[8] Rosenthal, H. P., A characterization of Banach spaces containing l^1, Proc. Nat. Acad. Sci. U.S.A., 71, 2411-2413 (1974) · Zbl 0297.46013 · doi:10.1073/pnas.71.6.2411
[9] Semadeni, Z., Banach spaces of continuous functions (1971), Warszawa: P.W.N., Warszawa · Zbl 0225.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.