On dentability and the Bishop-Phelps property. (English) Zbl 0365.46021


46B99 Normed linear spaces and Banach spaces; Banach lattices
46G10 Vector-valued measures and integration
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI


[1] E. Bishop and R. R. Phelps,The support functionals of a convex set, Proc. Symp. Pure Math.7, (Convexity) 27–35. · Zbl 0149.08601
[2] W. J. Davis and R. R. Phelps,The Radon-Nikodym propoerty and dentable sets in Banach spaces, Proc. Amer. Math. Soc.45 (1974), 119–122. · Zbl 0298.46046
[3] J. Diestel,Geometry of Banach Spaces–Selected Topics, Springer-Verlag 485, 1975. · Zbl 0307.46009
[4] R. E. Huff,Dentability and the Radon-Nikodym property, Duke Math. J.41 (1974), 111–114. · Zbl 0285.46037
[5] R. E. Huff and P. Morris,Geometric characterizations of the Radon-Nikodym property in Banach spaces. · Zbl 0351.46011
[6] J. Lindenstrauss,On operators which attain their norm, Israel J. Math.1 (1963), 139–148. · Zbl 0127.06704
[7] H. Maynard,A geometric characterization of Banach spaces possessing the Radon-Nikodym property, Trans. Amer. Math. Soc.185 (1973), 493–500. · Zbl 0278.46040
[8] R. R. Phelps,Dentability and extreme points in Banach spaces, J. Functional Analysis, (1974). · Zbl 0287.46026
[9] M. A. Rieffel,Dentable subsets of Banach spaces, with applications to a Radon-Nikodym theorem, Proc. Conf. Functional Analysis, Thompson Book Co., Washington, D.C., 1967, pp. 71–77.
[10] S. L. Troyanski,On locally uniformely convex and differentiable norms in certain nonseparable Banach spaces, Studia Math.37 (1971), 173–180. · Zbl 0214.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.