zbMATH — the first resource for mathematics

Fibrations spinorielles et twisteurs généralises. (French) Zbl 0365.53020

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C27 Spin and Spin\({}^c\) geometry
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
Full Text: DOI
[1] M. F. Atiyah, R. Bott etA. Shapiro, Clifford modules,Topology 3 (1964),suppl. 1, 3–38. · Zbl 0146.19001
[2] Ch. Barbance,Thèse, Paris, 1969.
[3] C. Chevalley,The algebraic theory of spinors, Columbia University Press, New York, 1954. · Zbl 0057.25901
[4] A. Crumeyrolle, Structures spinorielles,Ann. Inst. H. Poincaré Sect. A (N. S.) 11 (1969), 19–55. · Zbl 0188.26102
[5] A. Crumeyrolle, Groupes de spinorialité,Ann. Inst. H. Poincaré Sect. A (N. S.) 14 (1971), 309–323.
[6] A. Crumeyrolle, Dérivations, formes et opérateurs usuels sur les champs spinoriels des variétés différentiables de dimension paire,Ann. Inst. H. Poincaré Sect. A (N. S.) 16 (1972), 171–201. · Zbl 0235.53018
[7] Y. Choquet-Bruhat,Géométrie différentielle et systèmes extérieurs, Dunod, Paris, 1968.
[8] R. Hermann,Vector bundles in mathematical physics, Vol. 1, W. A. Benjamin, Inc., New York, 1970. · Zbl 0213.23603
[9] Y. Kosmann,Dérivées de Lie des spineurs, Thèse, Paris, 1970;Ann. Mat. Pura Appl. 91 (1972), 317–395.
[10] A. Lichnerowicz, Champs spinoriels et propagateurs en relativité générale,Bull. Soc. Math. France 92 (1964), 11–100. · Zbl 0138.44301
[11] A. Lichnerowicz,Théorie globale des connexions et des groupes d’holonomie, Cremonese, Rome, 1955. · Zbl 0116.39101
[12] R. S. Palais,Seminar on the Atiyah-Singer index theorem, chap. IV: Differential operators on vector bundles, Princeton University Press, Princeton, 1965. · Zbl 0137.17002
[13] R. Penrose, Twistor algebra,J. Mathematical Phys. 8 (1967), 345–366. · Zbl 0163.22602
[14] N. E. Steenrod,The topology of fibre bundles, Princeton University Press, Princeton, 1951. · Zbl 0054.07103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.