×

zbMATH — the first resource for mathematics

Coxeter orbits and eigenspaces of Frobenius. (English) Zbl 0366.20031

MSC:
20G40 Linear algebraic groups over finite fields
14F30 \(p\)-adic cohomology, crystalline cohomology
14L99 Algebraic groups
16Gxx Representation theory of associative rings and algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55-151 (1965) · Zbl 0145.17402
[2] Bourbaki, N.: Groupes et algèbres de Lie. Chap. 4. 5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[3] Carter, R. W.: Conjugacy classes in the Weyl group. Comp. Math.25, 1, 1-59 (1972) · Zbl 0254.17005
[4] Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. of Math.35, 588-621 (1934) · Zbl 0010.01101 · doi:10.2307/1968753
[5] Curtis, C. W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type ... Publ. Math. I.H.E.S.40, 81-116 (1972) · Zbl 0254.20004
[6] Deligne, P.: La conjecture de Weil. I. Publ. Math. I.H.E.S.43, 273-307 (1974) · Zbl 0287.14001
[7] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[8] Grothendieck, A.: Formule de Lefschetz et rationalité des fonctionsL Séminaire Bourbaki, 279
[9] Harish Chandra: Eisenstein series over finite fields. Funct. Analysis and Related Fields. ed. F.E. Browder. Berlin-Göttingen-Heidelberg: Springer 1970 · Zbl 0226.20049
[10] Katz, N., Messing, W.: Some consequences of the Riemann Hypothesis for varieties over finite fields. Inv. Math.23, 73-77 (1974) · Zbl 0275.14011 · doi:10.1007/BF01405203
[11] Lusztig, G.: On the Green polynomials of classical groups. To appear in the Proc. of L.M.S. · Zbl 0371.20037
[12] Lusztig, G.: Sur la conjecture de Macdonald, C.R. Acad. Sci. Paris, t.280 (10Fév. 1975). 317-320
[13] Solomen, L.: A decomposition of the group algebra of a finite Coxeter group. J. Algebra9, 220-239 (1968) · Zbl 0186.04503 · doi:10.1016/0021-8693(68)90022-7
[14] Springer, T.A.: On the characters of certain finite groups. Proc. Summer School. Budapest 1971 · Zbl 0224.05002
[15] Springer, T.A.: Regular elements in reflection groups. Inv. Math.25, 159-198 (1974) · Zbl 0287.20043 · doi:10.1007/BF01390173
[16] Springer, T.A.: Some arithmetical results on semisimple Lie algebras. Publ. Math. I.H.E.S.30, 115-141 (1966) · Zbl 0156.27002
[17] Steinberg, R.: Endomorphisms of linear algebraic groups. Memoirs of A.M.S.80, 1968 · Zbl 0164.02902
[18] Steinberg, R.: Finite reflection groups. Trans. A.M.S.91, 493-504 (1959) · Zbl 0092.13904 · doi:10.1090/S0002-9947-1959-0106428-2
[19] Steinberg, R.: Lectures on Chevalley groups. Yale University, 1967 · Zbl 0164.34302
[20] Steinberg, R.: Regular elements in semisimple algebraic groups. Publ. Math. I.H.E.S.25, 49-80 (1965) · Zbl 0136.30002
[21] Tits, J.: Classification of algebraic semisimple groups. Proc. Symp Pure Math., vol. 9 A.M.S., 1966 · Zbl 0238.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.