×

Produit croise d’une algebre de von Neumann par une algebre de Kac. (German) Zbl 0366.46053


MSC:

46L10 General theory of von Neumann algebras
47L50 Dual spaces of operator algebras
Full Text: DOI

References:

[1] Digernes, T., Poids dual sur un produit croisé, C. R. Acad. Sci. Paris Ser. A, t. 278, 937-940 (1974) · Zbl 0279.46038
[2] Enock, M.; Schwartz, J. M., Une dualité dans les algèbres de von Neumann, Bull. Soc. Math. France Suppl. Mem., 44, 1-144 (1975) · Zbl 0343.46044
[3] Enock, M.; Schwartz, J. M., Une nouvelle construction du poids dual sur le produit croisé d’une algèbre de von Neumann par un groupe localement compact, C. R. Acad. Sci. Paris Ser. A, t. 282, 415-418 (1976) · Zbl 0342.46049
[4] Haagerup, U., Operator Valued Weights in von Neumann Algebras, Odense Mat. Inst. Preprint No. 12 (1975)
[5] Haagerup, U., On the Dual Weights for Crossed Products of von Neumann Algebras, Odense Mat. Inst. Preprint No. 10 (1975)
[6] Landstad, M., Duality for Covariant Systems, (Trondheim Preprint (1974)) · Zbl 0397.46059
[7] Nakagami, Y., Dual action on a von Neumann algebra and Takesaki’s duality for a locally compact group, Publ. RIMS Kyoto Univ., 12 (1976)
[8] Sauvageot, J. L., Sur le type du produit croisé d’une algèbre de von Neumann par un groupe localement compact d’automorphismes, C. R. Acad. Sci. Paris Ser. A, t. 278, 941-944 (1974) · Zbl 0279.46039
[9] Schwartz, J. M., Sur la structure des algèbres de Kac, Ann. Inst. Fourier, 17 (1977), fasc. 4
[10] Takesaki, M., Conditional expectations in von Neumann algebras, J. Functional Analysis, 9, 306-321 (1972) · Zbl 0245.46089
[11] Takesaki, M., Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131, 249-310 (1973) · Zbl 0268.46058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.