zbMATH — the first resource for mathematics

On the relation between quadratic termination and convergence properties of minimization algorithms. Part II. Applications. (English) Zbl 0366.65028

65K05 Numerical mathematical programming methods
90C25 Convex programming
90C30 Nonlinear programming
Full Text: DOI EuDML
[1] Baptist, P.: Über das Konvergenzverhalten gewisser Update-Verfahren zur minimierung einer reelwertigen Funktion bei nichtperfekter Schrittlängenbestimmung. Diss., Universität Würzburg, 1975
[2] Broyden, C. G.: Quasi-Newton methods and their application to function minimization. Math. Comput.21, 368-381 (1967) · Zbl 0155.46704
[3] Broyden, C. G.: The convergence of a class of double-rank minimization algorithms. Part 1 and Part 2. J. Inst. Math. Appl.6, 76-90, 222-231 (1970) · Zbl 0223.65023
[4] Burmeister, W.: Die Konvergenzordnung des Fletcher-Powell Algorithmus. Z. Angew. Math. Mech.53, 696-699 (1973) · Zbl 0269.90039
[5] Cohen, A.: Rate of convergence of several conjugate gradient algorithms. SIAM J. numer. Analysis9, 248-259 (1972) · Zbl 0279.65051
[6] Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal.4, 10-26 (1967) · Zbl 0154.40302
[7] Davidon, W. C.: Variable metric method for minimization. Argonne Nat. Labs., Report ANL-5990, Rev. 1959 · Zbl 0752.90062
[8] Dixon, L. C. W.: On quadratic termination and second order convergence: Two properties of unconstrained optimization algorithms. 1975 · Zbl 0322.90062
[9] Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. Computer J.6, 163-168 (1963) · Zbl 0132.11603
[10] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Comput. J.7, 145-154 (1964) · Zbl 0132.11701
[11] Lenard, M. L.: Practical convergence conditions for unconstrained optimization. Math. Programming4, 309-323 (1973) · Zbl 0268.90059
[12] Lenard, M. L.: Practical convergence conditions for the Davidon-Fletcher-Powell method. Math. Programming9, 69-86 (1975) · Zbl 0329.90059
[13] Lenard, M. L.: Convergence conditions for restarted conjugate gradient methods with inaccurate line searches. Math. Programming10, 32-51 (1976) · Zbl 0325.90057
[14] McCormick, G. P., Ritter, K.: Methods of conjugate directions versus quasi-Newton methods. Math. Programming3, 101-116 (1972) · Zbl 0247.90055
[15] McCormick, G. P., Ritter, K.: Alternative proofs of the convergence properties of the conjugategradient method. J. Optimization Theory Appl.13, 497-518 (1974) · Zbl 0261.90053
[16] Oren, S. S., Luenberger, D. G.: Self-scaling variable metric algorithms. Part I. Criteria and sufficient conditions for scaling a class of algorithms. Management Sci.20, 845-862 (1974) · Zbl 0316.90064
[17] Oren, S. S.: Self-scaling variable metric algorithms, Part II. Implementation and experiments. Management Sci.20, 863-874 (1974) · Zbl 0316.90065
[18] Pearson, J. D.: Variable metric methods of minimization. Comput. J.12, 171-178 (1969) · Zbl 0207.17301
[19] Polak, E., Ribière, G.: Note sur la convergence de methodes de directions conjugées. Rev. Francaise Informat. Recherche Operationelle (16-R1), pp. 35-43, 1969 · Zbl 0174.48001
[20] Schuller, G., Stoer, J.: Über die Konvergenzordnung gewisser Rang-2-Verfahren zur Minimierung von Funktionen. In: International series of numerical mathematics, Vol.23, pp. 125-147. Basel: Birkhäuser 1974 · Zbl 0331.65042
[21] Stoer, J.: On the convergence rate of imperfect minimization algorithms in Broyden’s ?-class. Math. Programming9, 313-335 (1975) · Zbl 0346.90047
[22] Stoer, J.: On the relation between quadratic termination and convergence properties of minimization algorithms. Part I. Theory. Numer. Math.28, 343-366 (1977) · Zbl 0366.65027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.