×

zbMATH — the first resource for mathematics

A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties. (English) Zbl 0367.14008

MSC:
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
32L99 Holomorphic fiber spaces
14C99 Cycles and subschemes
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] M.F. Atiyah and I.M. Singer : The index of elliptic operators: III . Ann. of Math. 87 (1968) 546-604. · Zbl 0164.24301 · doi:10.2307/1970717
[2] P. Baum , W. Fulton , and R. Macpherson : Riemann-Roch for singular varieties . Publ. Math. I.H.E.S. no. 45 (1975) 101-146. · Zbl 0332.14003 · doi:10.1007/BF02684299 · numdam:PMIHES_1975__45__101_0 · eudml:103937
[3] P. Baum , W. Fulton , and R. Macpherson : Homology K and Riemann-Roch for singular varieties (to appear). · Zbl 0332.14003 · doi:10.1007/BF02684299 · numdam:PMIHES_1975__45__101_0 · eudml:103937
[4] A. Borel and J.-P. Serre : Le théorème de Riemann-Roch, d’après A. Grothendieck . Bull. Soc. Math. France 86 (1958) 97-136. · Zbl 0091.33004 · doi:10.24033/bsmf.1500 · numdam:BSMF_1958__86__97_0 · eudml:86949
[5] W. Fulton : Rational equivalence for singular varieties . Publ. Math. I.H.E.S. no. 45 (1975) 147-167. · Zbl 0332.14002 · doi:10.1007/BF02684300 · numdam:PMIHES_1975__45__147_0 · eudml:103938
[6] W. Fulton : Rational equivalence for schemes (in preparation). · Zbl 0194.21901
[7] A. Grothendieck , Fibrés vectoriels: fibrés projectifs, fibrés en drapeaux . Séminaire Henri Cartan 13 (1960/61) exposé 12. | · www.numdam.org
[8] F. Hirzebruch : Topological Methods in Algebraic Geometry . Springer, 1966. · Zbl 0138.42001
[9] A. Grothendieck and J. Dieudonné : Éléments de géométrie algébrique . Publ. Math. I.H.E.S. no. 8 (1961). | · Zbl 0203.23301 · www.numdam.org
[10] Séminaire de Géométrie Algébrique du Bois-Marie (I.H.E.S.) 5; Cohomologie 1-adique et fonctions L (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.