×

On the von Neumann algebra of an ergodic group action. (English) Zbl 0367.28013


MSC:

28D05 Measure-preserving transformations
46L10 General theory of von Neumann algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Dixmier, Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969. · Zbl 0175.43801
[2] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. · Zbl 0182.16101
[3] F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295 – 315. · Zbl 0195.42301
[4] George W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187 – 207. · Zbl 0178.38802
[5] Shôichirô Sakai, \?*-algebras and \?*-algebras, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. · Zbl 0233.46074
[6] J. T. Schwartz, \?*-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. · Zbl 0185.38701
[7] Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350 – 372. · Zbl 0391.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.