×

zbMATH — the first resource for mathematics

The Livsic matrix in perturbation theory. (English) Zbl 0367.47010

MSC:
47A55 Perturbation theory of linear operators
47B25 Linear symmetric and selfadjoint operators (unbounded)
47A40 Scattering theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scH. Baumgartel, Kompacte Storungen nichtisolierter Eigenwerte endlicher Vielfachheit, Mber. Dt. Akad. Wiss. Berlin, to appear. · Zbl 0274.47009
[2] Baumgartel, H, Endlich-dimensionale analytische storungstheorie, (1972), Akademie-Verlag Berlin
[3] Brodski, M.S, Triangular and Jordan representations of linear operators, ()
[4] Conley, C.C; Rejto, P.A, Spectral concentration, II: general theory, () · Zbl 0193.09802
[5] de Branges, L; Rovnyak, J, Canonical models in quantum scattering theory, () · Zbl 0203.45101
[6] Friedrichs, K.O, On the perturbation of continuous spectra, Comm. pure appl. math., 1, 361-406, (1948) · Zbl 0031.31204
[7] Hoffman, K, Banach spaces of analytic functions, (1962), Prentice Hall Englewood Cliffs, NJ · Zbl 0117.34001
[8] Höhler, G, Über die exponential naherung beim teilchenzerfall, Zeit. fur phys., 152, 546-565, (1958) · Zbl 0082.22803
[9] Horwitz, L.P; Lavita, J; Marshand, J.-P, The inverse decay problem, J. math. phys, 12, 2537-2543, (1971) · Zbl 0234.47040
[10] Howland, J.S, Perturbation of embedded eigenvalues by operators of finite rank, J. math. anal. appl., 23, 575-584, (1968) · Zbl 0185.20903
[11] Howland, J.S, Simple poles of operator-valued functions, J. math. anal. appl., 36, 12-21, (1971) · Zbl 0234.47009
[12] Howland, J.S, Perturbation of embedded eigenvalues, Bull. amer. math. soc., 78, 380-383, (1972)
[13] Howland, J.S, Spectral concentration and virtual poles, II, Trans. amer. math. soc., 162, 141-156, (1971) · Zbl 0251.47025
[14] Howland, J.S, Regular perturbations, () · Zbl 0311.47006
[15] \scJ. S. Howland, Puiseux series for resonances near an embedded eigenvalue, Pacific J. Math., to appear. · Zbl 0312.47010
[16] Ikebe, T, Eigenfunction expansions associated with schroedinger operators and their applications to scattering theory, Arch. rat. mech. anal., 5, 1-34, (1960) · Zbl 0145.36902
[17] Kato, T, Perturbation theory for linear operators, (1966), Springer-Verlag New York · Zbl 0148.12601
[18] Kato, T; Kuroda, S.T, The abstract theory of scattering, Rocky mountain J. math., 1, 127-171, (1971) · Zbl 0241.47005
[19] Kato, T; Kuroda, S.T, Theory of simple scattering and eigenfunction expansions, () · Zbl 0224.47004
[20] Kuroda, S.T, Finite-dimensional perturbation and a representation of the scattering operator, Pacific J. math., 13, 1305-1318, (1963) · Zbl 0148.12701
[21] Lax, P; Phillips, R.S, Scattering theory, (1967), Academic Press New York, London · Zbl 0214.12002
[22] Livsic, M.S, The application of non-self-adjoint operators to scattering theory, Soviet physics JETP, 4, 91-98, (1957), (English translation)
[23] Livsic, M.S, On the scattering matrix of an intermediate system, Sov. phys. doklady, 1, 620-624, (1956), Translations · Zbl 0078.20001
[24] \scM. S. Livsic, The method of non-selfadjoint operators in dispersion theory, Amer. Math. Soc. Translations, Series 2, \bf16, 427-437.
[25] Livsic, M.S, Operators, oscillations, waves, () · Zbl 0254.47001
[26] McLeod, J.B, Spectral concentration, I: the one-dimensional schroedinger operator, () · Zbl 0193.09801
[27] Sz.-Nagy, B; Foias, C, Harmonic analysis of operators on Hilbert space, (1970), North Holland Amsterdam · Zbl 0201.45003
[28] Simon, B, Resonances in N-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. math., 97, 247-274, (1973) · Zbl 0252.47009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.