×

Monotone matrices and monotone Markov processes. (English) Zbl 0367.60078


MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Athreya, K.B.; Ney, P.E., Branching processes, (1972), Springer New York · Zbl 0259.60002
[2] Callaert, H.; Keilson, J., On exponential ergodicity and spectral structure for birth-death processes, Stoch. proc. appl., 1, 187-235, (1973) · Zbl 0264.60054
[3] Cox, D.R.; Miller, H.D., The theory of stochastic processes, (1965), Wiley New York · Zbl 0149.12902
[4] Daley, D.J., Stochastically monotone Markov chains, Z. wahrscheinlichkeitstheorie verw. geb., 10, 305-317, (1968) · Zbl 0177.45604
[5] Esary, J.D.; Proschan, F., A reliability bound for systems of maintained interdependent components, Jasa, 65, 329-338, (1970) · Zbl 0202.17001
[6] Esary, J.D.; Proschan, F.; Walkup, D.W., Association of random variables with applications, Ann. math. stat., 38, 1466-1474, (1967) · Zbl 0183.21502
[7] Jensen, A., Markoff chains as an aid in the study of markoff processes, Skand. akt., 36, 87-91, (1953) · Zbl 0051.35607
[8] Kalmykov, G.I., On the partial ordering of one-dimensional Markov processes, Theor. prob. appl., 7, 456-459, (1962) · Zbl 0113.33803
[9] Karlin, S., Total positivity, (1968), Stanford University Press · Zbl 0219.47030
[10] Karlin, S.; Taylor, H., A first course in stochastic processes, (1975), Academic Press New York
[11] Keilson, J., Green’s function methods in probability theory, (1965), Hafner New York · Zbl 0147.36502
[12] Keilson, J., A review of transient behavior in regular diffusion and birth-death processes, J. appl. prob., 2, 405-428, (1965) · Zbl 0211.48201
[13] Keilson, J., Sojourn times, exit times and jitter in multi-variate Markov processes, Adv. appl. prob., 6, 747-756, (1974) · Zbl 0316.60046
[14] Keilson, J.; Wishart, D.M.G., A central limit theorem for processes defined on a finite Markov chain, Proc. camb. phil. soc., 60, 547-567, (1964) · Zbl 0126.33504
[15] Kirstein, B.M., Monotonicity and comparability of time-homogeneous Markov processes with discrete state space, Math. operationsforschung u. stat., 7, 151-168, (1976) · Zbl 0332.60051
[16] Ledermann, W.; Reuter, G.E.H., Spectral theory for the differential equations of simple birth-and-death processes, Philos. trans. royal soc. A, 246, 321-369, (1954) · Zbl 0059.11704
[17] Lehmann, E.L., Some concepts of dependence, Ann. math. stat., 37, 1137-1153, (1966) · Zbl 0146.40601
[18] Lindley, D.V., The theory of queues with a single server, Proc. camb. phil. soc., 48, 277-289, (1952) · Zbl 0046.35501
[19] O’Brien, G., A note on comparisons of Markov processes, Ann. math. stat., 43, 365-368, (1972) · Zbl 0241.60056
[20] Vere-Jones, D., Geometric ergodicity in denumerable Markov chains, Quart. J. math. Oxford, 13, 7-28, (1962) · Zbl 0104.11805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.