An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities. (English) Zbl 0367.65056


65N15 Error bounds for boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI


[1] Alan E. Berger, The truncation method for the solution of a class of variational inequalities, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 10 (1976), no. R-1, 29 – 42 (English, with Loose French summary). · Zbl 0334.49012
[2] Alan E. Berger, Melvyn Ciment, and Joel C. W. Rogers, Numerical solution of a diffusion consumption problem with a free boundary, SIAM J. Numer. Anal. 12 (1975), no. 4, 646 – 672. · Zbl 0317.65032 · doi:10.1137/0712049
[3] Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1 – 168. · Zbl 0221.35028
[4] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (French). Travaux et Recherches Mathématiques, No. 21. · Zbl 0298.73001
[5] Richard S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput. 28 (1974), 963 – 971. · Zbl 0297.65061
[6] R. FALK, Unpublished manuscript.
[7] Charles Hunt and Nabil Nassif, Inéquations variationnelles et détermination de la charge d’espace de certains semi-conducteurs, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1409 – 1412 (French). · Zbl 0283.49020
[8] Claes Johnson, A convergence estimate for an approximation of a parabolic variational inequality, SIAM J. Numer. Anal. 13 (1976), no. 4, 599 – 606. · Zbl 0337.65055 · doi:10.1137/0713050
[9] J.-L. Lions, Quelques problèmes de la théorie des équations non linéaires d’évolution, Problems in non-linear analysis (C.I.M.E., IV Ciclo, Varenna, 1970), Edizioni Cremonese, Rome, 1971, pp. 189 – 342 (French).
[10] J. NEČAS, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris; Academia, Prague, 1967. MR 37 #3168. · Zbl 1225.35003
[11] Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81 – 98. · Zbl 0221.65174 · doi:10.1007/BF01395933
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.