×

Para primal algebras. (English) Zbl 0368.08004


MSC:

08Axx Algebraic structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Astromoff,Some structure theorems for primal and categorical algebras, Math. Z.87 (1965), 365–377. · Zbl 0136.26201 · doi:10.1007/BF01111718
[2] K. A. Baker,Equational bases for finite algebras, Notices Amer. Math. Soc.19 (1972), A-44.
[3] G. Birkhoff,Lattice Theory, 3rd Edition, Providence. (Amer. Math. Soc., 1967).
[4] R. H. Bruck,Simple quasigroups, Bull Amer. Math. Soc.50 (1944), 769–781. · Zbl 0063.00634 · doi:10.1090/S0002-9904-1944-08236-0
[5] –,A Survey of Binary Systems, New York. (Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1966). · Zbl 0141.01401
[6] B. Caine,A characterization of some equationally complete varieties of quasigroups (Preprint).
[7] A. H. Clifford andG. B. Preston,The Algebraic Theory of Semigroups I, Providence. (Amer. Math. Soc., 1961). · Zbl 0111.03403
[8] Trevor Evans,Homomorphisms of non-associative systems, J. London Math. Soc.24 (1949), 254–260. · Zbl 0034.01304 · doi:10.1112/jlms/s1-24.4.254
[9] –,Identical relations in loops, J. Austral. Math. Soc.12 (1971), 275–286. · Zbl 0219.20053 · doi:10.1017/S1446788700009745
[10] –,The lattice of semigroup varieties, Semigroup Forum2 (1971), 1–43. · Zbl 0225.20043 · doi:10.1007/BF02572269
[11] A. L. Foster,Families of algebras with unique (sub-) direct factorization: Equational characterization of factorization, Math. Ann.166 (1966), 302–326. · Zbl 0163.26603 · doi:10.1007/BF01360786
[12] – andA. F. Pixley,Semi-categorical algebras. I Semi-primal algebras, Math. Z.83 (1964), 147–169. · Zbl 0117.26001 · doi:10.1007/BF01111252
[13] —-,Semi-categorićal algebras. II, Math. Z,85 (1964) 169–184. · Zbl 0121.26505 · doi:10.1007/BF01110374
[14] D. Geiger,Coherent congruences (Preprint).
[15] M. Hall,Theory of Groups, New York, (Macmillan, 1959). · Zbl 0084.02202
[16] B. Jonsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–127. · Zbl 0167.28401
[17] J. Kalicki, andD. Scott,Equational completeness of abstract algebras, Indag. Math.17 (1955), 650–659. · Zbl 0073.24501
[18] P. Krauss,On primal algebras, Algebra Univ.2 (1972), 62–67. · Zbl 0265.08001 · doi:10.1007/BF02945008
[19] –,On quasi primal algebras, Math. Z.134 (1973), 85–89. · doi:10.1007/BF01214467
[20] S. Oates MacDonald,Laws in strictly simple loops, Bull. Austral. Math. Soc.9 (1973), 349–354. · Zbl 0267.08004 · doi:10.1017/S0004972700043355
[21] –,Various varieties, J. Austral. Math. Soc.16 (1973), 363–367. · Zbl 0272.08005 · doi:10.1017/S1446788700015172
[22] M. Makkai,A proof of Baker’s finite-base theorem on equational classes generated by finite elements of congruence distributive varieties, Algebra Univ.3 (1973), 160–173. · Zbl 0288.08007 · doi:10.1007/BF02945118
[23] R. S. Pierce,Introduction to the Theory of Abstract Algebras, New York, (Holt, Rinehart and Winston, 1968). · Zbl 0159.57801
[24] A. F. Pixley,Functionally complete algebras generating distributive and permutable classes, Math. Z.114 (1970), 361–372. · doi:10.1007/BF01110387
[25] –,The ternary discriminator function in universal algebra, Math. Ann.191 (1971), 166–176. · doi:10.1007/BF01578706
[26] –,Completeness in arithmetical algebras, Algebra Univ.2 (1972), 179–196. · Zbl 0254.08010 · doi:10.1007/BF02945027
[27] R. W. Quackenbush,Algebras with small fine spectrum (Preprint).
[28] A. Tarski,Equationally complete rings and relation algebras Indag. Math18 (1956), 39–46. · Zbl 0073.24603
[29] W. Taylor,Uniformity of congruences, Algebra Univ.4 (1974), 342–360. · Zbl 0313.08001 · doi:10.1007/BF02485747
[30] H. Werner,Congruences on products of algebras and functionally complete algebras, Algebra Univ.4 (1974), 99–105. · Zbl 0311.08006 · doi:10.1007/BF02485711
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.