×

On the Čech bicomplex associated with foliated structures. (English) Zbl 0368.57006

Ann. Inst. Fourier 28, No. 3, 217-224 (1978); erratum ibid. 30, No. 3 (1980).

MSC:

57R30 Foliations in differential topology; geometric theory

References:

[1] [1] , Lectures on characteristic classes and foliations, Lecture Notes in Math., Springer, 279 (1972), 1-94. · Zbl 0241.57010
[2] [2] and , Un invariant des feuilletages de codimension 1, C.R. Acad. Sci., Paris, 273 (1971), A92-95. · Zbl 0215.24604
[3] [3] and , Foliated bundles and characteristic classes, Lecture Notes in Math., Springer, 493 (1975). · Zbl 0308.57011
[4] [4] and , Sur l’homomorphisme de Chern-Weil local et ses applications au feuilletage, C.R. Acad. Sci., Paris, 281 (1975), A703-706. · Zbl 0318.57028
[5] [5] , Sur certaines propriétés topologiques des variétés feuilletées, Hermann (1952). · Zbl 0049.12602
[6] [6] , On the spectral sequences associated to foliated structures, Nagoya Math. J., 38 (1970), 53-61. · Zbl 0193.52602
[7] [7] , On the cohomology of bigraded forms associated with foliated structures, Bull. Soc. Math. Grèce, 15 (1974), 68-76. · Zbl 0321.57016
[8] [8] , and , Sur la multiplicativité de l’homomorphisme de Chern-Weil local, C.R. Acad. Sci., Paris, 280 (1975), A369-371. · Zbl 0301.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.