Approximation by finite element functions using local regularization. (English) Zbl 0368.65008


65D10 Numerical smoothing, curve fitting
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A30 Approximation by other special function classes
Full Text: EuDML


[1] Ph. CLEMENT, Un problème d’approximation par éléments finis, Annexe à la thèse de Doctorat, Ecole Polytechnique Fédérale de Lausane, 1973.
[2] J. J GOEL, Construction of Basic Functions for Numerical Utilisation of Ritz-s Method, Numer. Math., (1968), 12, 435-447. Zbl0271.65061 MR256580 · Zbl 0271.65061 · doi:10.1007/BF02161367
[3] M. ZLAMAL, On the Finite Element Method, Numer. Math., (1968), 12, 394-409. Zbl0176.16001 MR243753 · Zbl 0176.16001 · doi:10.1007/BF02161362
[4] J. H. BRAMBLE and M. ZLAMAL, Triangular Elements in the Finite Element Method, Math. of Comp. vol. 24, number 12, (1970), 809-820. Zbl0226.65073 MR282540 · Zbl 0226.65073 · doi:10.2307/2004615
[5] G. STRANG, Approximation in the finite element method, Numer Math., (1972), 19, 81-98. Zbl0221.65174 MR305547 · Zbl 0221.65174 · doi:10.1007/BF01395933
[6] G DUPUIS et J. J. GOEL, Eléments finis raffinés en élasticité bidimensionnelle, ZAMP, vol. 20, (1969), 858-881. Zbl0201.26604 · Zbl 0201.26604 · doi:10.1007/BF01592296
[7] J. DESCLOUX, Méthodes des éléments finis, Dept. de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1973.
[8] J. DESCLOUX, Two Basic Properties of Finite Eléments, Dept. of Math., Ecole Polytechnique Fédérale de Lausanne, 1973.
[9] P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in \(R^n\) with applications to finite elements methods, Arch. Rational Mech. Anal., 46 (1972), 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[10] G. FICHERA, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics 8, Springer, 1965. Zbl0138.36104 MR209639 · Zbl 0138.36104 · doi:10.1007/BFb0079959
[11] S. HILBERT, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. of Comp., 27 (1973), 81-89.tisf Zbl0257.65087 MR331715 · Zbl 0257.65087 · doi:10.2307/2005248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.