×

A stable interior penalty method for convex extremal problems. (English) Zbl 0368.90114


MSC:

90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Carroll, C.W.: The created response surface technique for optimizing nonlinear restrained systems. Operations Res.9, 169-184 (1961) · Zbl 0111.17004
[2] Fiacco, A.V., McCormick, G.P.: Nonlinear programming: Sequential unconstrained minimization techniques. New York: Wiley 1968 · Zbl 0193.18805
[3] Frisch, K.R.: The logarithmic potential method of convex programming. Memorandum of May 13, 1955, University Institute of Economics, Oslo
[4] Hartung, J.: Penalty-Methoden für Kontrollprobleme und Open-Loop-Differentialspiele. In: Optimization and optimal control (R. Bulirsch, W. Oettli, J. Stoer, eds.), Lecture Notes in Mathematics, Vol. 477, pp. 127-144. Berlin-Heidelberg-New York: Springer 1975
[5] Hartung, J.: Zur Darstellung pseudoinverser Operatoren. Arch. Math.XXVIII, 200-208 (1977) · Zbl 0352.41034
[6] Holmes, R.B.: A course on optimization and best approximation. Lecture Notes in Mathematics, Vol. 257, Berlin-Heidelberg-New York: Springer 1972 · Zbl 0235.41016
[7] Lasdon, L.S.: An efficient algorithm for minimizing barrier and penalty functions. Math. Programming2, 65-106 (1972) · Zbl 0247.90056
[8] Lootsma, F.A.: A survey of methods for solving constrained minimization problems via unconstrained minimization. In: Numerical methods for non-linear optimization (F.A. Lootsma, ed.), pp. 313-347. London-New York: Academic Press 1972 · Zbl 0268.90058
[9] Sandblom, C.-L.: On the convergence of SUMT. Math. Programming6, 360-364 (1974) · Zbl 0285.90061
[10] Tichonow, A.N.: On the stability of the optimization problem. Zh. vychisl. Mat. mat. Fiz.6, 631-634 (1966)
[11] Vignoli, A., Furi, M.: A characterization of well-posed minimum problems in a complete metric space. J. Optimization Theory Appl.5, 452-461 (1970) · Zbl 0184.44603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.