The theory of successor with an extra predicate. (English) Zbl 0369.02025


03B25 Decidability of theories and sets of sentences
03C35 Categoricity and completeness of theories
Full Text: DOI EuDML


[1] Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congr. Logic, Method. and Philos. Sci. 1960, 1-11. Stanford University Press 1962
[2] Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Logic34, 166-170 (1969) · Zbl 0209.02203
[3] Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theories of (generalized) successor. J. Symb. Logic31, 169-181 (1966) · Zbl 0144.24501
[4] Flum, J.: First order logic and its extensions. In: Logic Conference Kiel 1974, 248-310. Lecture Notes in Mathematics 499. Berlin, Heidelberg, New York: Springer 1975
[5] Hanf, W.P.: Model-theoretic methods in the study of elementary logic. In: The theory of models, 132-145. Amsterdam: North-Holland 1965 · Zbl 0166.25801
[6] Rogers, H., Jr.: Theory of recursive functions and effective computability. New York: McGraw-Hill 1967 · Zbl 0183.01401
[7] Siefkes, D.: Decidable extensions of monadic second order successor arithmetic. In: Automatentheorie und formale Sprachen, 441-472. Mannheim: Bibliogr. Inst. 1969
[8] Siefkes, D.: Undecidable extensions of monadic second order successor arithmetic. Z. f. Math. Logik und Grundlagen d. Math.17, 385-394 (1971) · Zbl 0225.02032
[9] Thomas, W.: Das Entscheidungsproblem für einige Erweiterungen der Nachfolger-Arithmetik. Dissertation. Universität Freiburg 1975
[10] Thomas, W.: A note on undecidable extensions of monadic second order successor arithmetic. Arch. math. Logik17, 43-44 (1975) · Zbl 0325.02032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.