×

n-th order ordinary differential systems under Stieltjes boundary conditions. (English) Zbl 0369.34006


MSC:

34B05 Linear boundary value problems for ordinary differential equations
34A30 Linear ordinary differential equations and systems
47E05 General theory of ordinary differential operators
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] R. Arens: Operational calcuhis of linear relations. Pacific J. Math. 11 (1961), 9-23. · Zbl 0102.10201
[2] R. C. Brown: Duality theory for \(n\)-th order differential operators under Stieltjes boundary conditions. S.I.A.M. J. Math. Anal., to appear. · Zbl 0316.47027
[3] R. C. Brown: Duality theory for \(n\)-th order differential operators under Stieltjes boundary conditions, II: nonsmooth coefficients and nonsingular measures. Ann. Mat. Pura. Appl., to appear. · Zbl 0316.47027
[4] R. C. Brown: Adjoint domains and generalized splines. Czech. Math. J. 25 (1975), 134-147. · Zbl 0309.41014
[5] R. C. Brown: The operator theory of generalized boundary value problems. MRC Tech. Summ. Rept. #1446, June 1974.
[6] E. A. Coddington: Self-adjoint subspace extensions of nondensely symmetric operators. Bull. Amer. Math. Soc. 79 (1973), 712-716. · Zbl 0285.47020
[7] E. A. Coddington: Eigenfunction expansions for nondensely defined operators generated by symmetric ordinary differential expressions. Bull. Amer. Math. Soc. 79 (1973), 964-968. · Zbl 0285.47021
[8] E. A. Coddington: Self-adjoint subspace extensions of nondensely defined symmetric operators. Advances in Math., 14 (1974), 309-332. · Zbl 0307.47028
[9] E. A. Coddington: Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Advances in Math., to appear. · Zbl 0307.47029
[10] E. A. Coddington, N. Levinson: Theory of ordinary differential equations. McGraw Hill, New York, 1955. · Zbl 0064.33002
[11] N. Dunford, J. T. Schwartz: Linear operators. Part 1. Interscience, New York, 1957.
[12] M. Hestenes: Calculus of variations and optimal control theory. Wiley, New York, 1966. · Zbl 0173.35703
[13] J. L. Kelley, I. Namioka: Linear topological spaces. Van Nostrand, Princeton, New Jersey, 1963. · Zbl 0115.09902
[14] A. M. Krall: Differential-boundary operators. Trans. Amer. Math. Soc., 154 (1971), 429-458. · Zbl 0217.11802
[15] A. M. Krall: Stietltjes differential-boundary operators. Proc. Amer. Math. Soc., 41 (1973), 80-86.
[16] A. M. Krall: Stieltjes differential-boundary operators II. Pacific J. Math., to appear. · Zbl 0283.34027
[17] A. M. Krall: Stieltjes differential-boundary operators III. · Zbl 0294.34006
[18] A. M. Krall: The development of general differential and general differential-boundary systems. Rocky Mt. J. Math., to appear. · Zbl 0322.34009
[19] E. J. McShane: Integration. Princeton U. Press, 1944. · Zbl 0060.13010
[20] D. L. Rusell: Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory. J. Math. Anal. Appl. 40 (1972), 336-368. · Zbl 0244.93025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.