Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. (English) Zbl 0369.35022 Studies Appl. Math. 57, 93-105 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 576 Documents MSC: 35J60 Nonlinear elliptic equations 45K05 Integro-partial differential equations 35B45 A priori estimates in context of PDEs 49J20 Existence theories for optimal control problems involving partial differential equations PDF BibTeX XML Cite \textit{E. H. Lieb}, Stud. Appl. Math. 57, 93--105 (1977; Zbl 0369.35022) Full Text: DOI References: [1] Aubin, Problèmes isoperimetrique et espaces de Sobolev, C. R. Acad. Sci. Paris 280 pp 279– (2001) [2] Brascamp, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 pp 227– (1974) · Zbl 0286.26005 [3] Feller, An Introduction to Probability Theory and its Applications 2 pp 261– (1966) · Zbl 0138.10207 [4] Riesz, Sur une inégalité intégrale, J. LMS 5 pp 162– (1930) [5] Rosen, Minimum value for c in the Sobolev inequality 2, SIAM J. Appl. Math. 21 pp 30– (1971) · Zbl 0201.38704 [6] Rudin, Fourier Analysis on Groups (1962) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.