×

Every normal linear system has a regular time-optimal synthesis. (English) Zbl 0369.49013


MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] ABRAHAM R., ROBBIN J.: Transversal mappings and flows. Benjamin, New York and Amsterdam 1967. · Zbl 0171.44404
[2] БОЛТЯНСКИЙ В. Г.: Достаточныє условия оптимальносги и обоснованиє мєтода динамичєского программирования. Извєстия АН СССР, сєр. мат., 28, 1968, 481-514.
[3] БОЛТЯНСКИЙ В. Г.: Матєматичєскиє мєтоды оптимального управлєния. Hayka, Москва 1969.
[4] BRUNOVSKÝ P.: The closed-loop time-optimal control I: Optimality. SIAM J. Contr., 12, 1974, 624-634. · Zbl 0301.49004
[5] BRUNOVSKÝ P., MIRICA S.: Classical and Filippov solutions of the differential equation defined by the time-optimal feedback control. Rev. Roum. Math. Pures Appl., 20, 1975, 873-883. · Zbl 0323.49006
[6] HERMES H.: Discontinuous vector fields and feedback control. Differential equations and Dynamical systems, J. K. Hale and J. P. LaSalle editors, Academic Press, New York and London 1967, 155-165. · Zbl 0183.15905
[7] HERMES H., LASALLE J. P.: Functional analysis and time-optimal control. Academic Press, New York and London 1969. · Zbl 0203.47504
[8] HIRONAKA H.: Introduction aux ensembles sous-analytiques. Asterisque, 7-8, 1973, 13-20. · Zbl 0287.14005
[9] KRENER A. J.: A generalization of Chow’s Theorem and the bang-bang theorem to nonlinear control problems. SIAM J. Contr., 12, 1974, 43-52. · Zbl 0243.93008 · doi:10.1137/0312005
[10] LEE E. B, MARKUS L.: Foundations of optimal control theory. Wiley, New York 1967. · Zbl 0159.13201
[11] MA3EP, Дж. Н. (MATHER J.): Стратификации и отображєния. Успєхи мат наук 27, 1972, 85-118
[12] SANSONE G.: Equazioni differenziale nel campo reale. Bologna 1948, Russian translation Moskva 1953. · Zbl 0033.36801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.