Barbosa, Joao Lucas; do Carmo, Manfredo Perdigão A proof of a general isoperimetric inequality for surfaces. (English) Zbl 0369.53054 Math. Z. 162, 245-261 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 Documents MSC: 53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov) 52A40 Inequalities and extremum problems involving convexity in convex geometry PDFBibTeX XMLCite \textit{J. L. Barbosa} and \textit{M. P. do Carmo}, Math. Z. 162, 245--261 (1978; Zbl 0369.53054) Full Text: DOI EuDML References: [1] Alexandroff, A.D.: Isoperimetric inequalities for curved surfaces. Dokl. Akad. Nauk. SSSR47, 235-238 (1945) · Zbl 0061.37608 [2] Alexandroff, A.D.: Die innere Geometrie der Konvexen Flächen. Berlin: Akademie-Verlag 1955 · Zbl 0065.15102 [3] Alexandroff, A.D., Streltsov, V.V.: Estimates of the length of a curve on a surface [Russian]. Dokl. Akad. Nauk. SSSR93, 221-224 (1953) [4] Alexandroff, A.D., Streltsov, V.V.: Isoperimetric problem and estimates of the length of a curve on a surface. Two-dimensional manifolds of bounded curvature. Proc. Steklov Inst. Math.76, 81-99 (1965) [5] Alexandroff, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces. Translations of Mathematical Monographs15. Providence, R.I.: Amer. Math. Soc. 1967 [6] Bandle, C.: On a differential inequality and its applications to geometry. Math. Z.147, 253-261 (1976) · Zbl 0316.35009 · doi:10.1007/BF01214083 [7] Beckenbach, E.F., Radó, T.: Subharmonic functions and surfaces of negative curvature. Trans. Amer. Math. Soc.35, 662-674 (1933) · Zbl 0007.13001 · doi:10.1090/S0002-9947-1933-1501708-X [8] Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann.60, 117-136 (1905) · JFM 36.0432.01 · doi:10.1007/BF01447496 [9] Bol, G.: Isoperimetrische Ungleichung für Bereiche auf Flächen. Jber. Deutsch. Math.-Verein.51, 219-257 (1941) · Zbl 0026.08901 [10] Burago, Yu.D.: Note on the isoperimetric inequality on two-dimensional surfaces. Siberian Math. J.14, 666-668 (1973) [11] Carleman, T.: Zur Theorie der Minimal-Flächen. Math. Z.9, 154-160 (1921) · JFM 48.0590.02 · doi:10.1007/BF01378342 [12] Fiala, F.: Le problème des isoperimètres sur les surfaces ouverts à courbure positive. Comment. Math. Helv.13, 293-396 (1940-41) · Zbl 0025.23003 · doi:10.1007/BF01378068 [13] Gromov, M.L., Rokhlin, V.A.: Embeddings and immersions in Riemannian Geometry. Russian Math. Surveys25, 5, 1-57 (1970) · Zbl 0222.53053 · doi:10.1070/RM1970v025n05ABEH003801 [14] Huber, A.: On the isoperimetric inequality on surfaces of variable Gaussian curvature. Ann. of Math60, 237-247 (1954) · Zbl 0056.15801 · doi:10.2307/1969630 [15] Huber, A.: Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie. Comment. Math. Helv.34, 99-126 (1960) · Zbl 0105.16104 · doi:10.1007/BF02565931 [16] Ionin, V.K.: On isoperimetric and various other inequalities for a manifold of bounded curvature. Siberian Math. J.10, 329-342 (1969) · Zbl 0191.20505 · doi:10.1007/BF00970435 [17] Osserman, R.: Bonessen-style isoperimetric inequalities. Preprint · Zbl 0404.52012 [18] Reschetniak, I.G.: Isothermal coordinates in manifolds of bounded curvature. Dokl. Akad. Nauk. SSSR94, 631-633 (1954) [19] Schmidt, E.: Beweis der Isoperimetrischen Eigenschaft der Kugel im Hyperbolischen und Sphärischen Raum jeder Dimensionenzahl. Math. Z.46, 204-230 (1940) · JFM 66.1341.02 · doi:10.1007/BF01181439 [20] Toponogov, V.A.: An isoperimetric inequality for surfaces whose Gaussian curvature is bounded above. Siberian Math. J.10, 144-157 (1969) · Zbl 0186.55801 · doi:10.1007/BF01208413 [21] Whitney, H.: Differentiable manifolds. Ann. of Math.37, 645-680 (1936) · JFM 62.1454.01 · doi:10.2307/1968482 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.