×

Continuous time control of the arrival process in an M/G/1 queue. (English) Zbl 0369.60112


MSC:

60K25 Queueing theory (aspects of probability theory)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arrow, K. J.; Karlin, S.; Scarf, H., Studies in the Mathematical Theory of Inventory and Production (1958), Stanford Univ. Press · Zbl 0079.36003
[2] Crabill, T.; Gross, D.; Magazine, M., A survey of research on optimal design and control of queues (1973), Inst. for Mgmt. Sci. and Engg., George Washington University, Serial T-280
[3] Doshi, B. T., Continuous time control of Markov processes on an arbitrary state space, (Ph.D. thesis (1974), Cornell University: Cornell University Madison, Wisconsin), Also Tech. Sum. Rpt. #1468. Math. Res. Ctr. · Zbl 0345.93073
[4] Gaver, D. P., Observing stochastic processes and approximate inversion of transform, Opns. Res., 14, 444-459 (1966)
[5] Iglehart, D. L., Optimality of \((s, S)\) inventory policies in the infinite horizon dynamic inventory problem, Mgmt. Sci., 9, 259-267 (1963)
[6] Iglehart, D. L., Dynamic programming and stationary analysis of inventory problems, (Scarf, H.; Gilford, D.; Shelly, M., Multistage Inventory Models and Techniques (1963), Stanford University Press), Ch. 1. · Zbl 0126.16004
[7] Johnson, E. L., On \((s, S)\) policies, Mgmt. Sci., 15, 80-101 (1968) · Zbl 0169.22501
[8] Jewell, W. S., Markov Renewal programming — II, Opns. Res., 11, 949-971 (1963) · Zbl 0126.15905
[9] Kakalik, J. S., Optimal dynamic operating policies for a service facility, (Tech. Rpt. No. 47 (1969), OR Center, M.I.T)
[10] Kakumanu, P. K., Continuous time Markov decision models with applications to optimization problems, (Tech. Rpt. No. 63 (1969), Department of Operations Research, Cornell University)
[11] Knudsen, N. Chr., Individual versus social optimization in queuing systems, (Tech. Rpt. No. 108 (1970), Department of Operations Research, Cornell University)
[12] Lippman, S.; Ross, S., The streetwalker’s dilemma; A job shop model, (WMSI Tech. Rpt. (1969), University of California: University of California Los Angeles) · Zbl 0225.90019
[13] Miller, B. L., A queuing reward system with several customer classes, Mgmt. Sci., 16, 234-245 (1968)
[14] Mine, H.; Ohno, K., An optimal rejection time for an M/G/1 queuing system, Opns. Res., 19, 194-207 (1971) · Zbl 0233.60080
[15] Pennington, R. H., Introductory Computer Methods and Numerical Analysis (1965), Macmillan: Macmillan New York
[16] Prabhu, N. U., Queues and Inventories (1965), Wiley: Wiley New York · Zbl 0131.16904
[17] Prabhu, N. U., Stochastic control of queuing systems, MRC Tech. Rpt. No. 1208 (1972)
[18] Prabhu, N. U.; Stidham, S., Optimal control of queuing systems, (Mathematical Methods in Queuing Theory Conference (1973), WMU: WMU Kalamazoo) · Zbl 0285.60087
[19] Scarf, H., A survey of analytical techniques in inventory theory, (Scarf, H.; Gilford, D.; Shelly, M., Multistage Inventory Models and Techniques (1963), Stanford University Press), Ch. 7. · Zbl 0126.16101
[20] Takacs, L., Introduction to the Theory of Queues (1962), Oxford University Press: Oxford University Press New York · Zbl 0118.13503
[21] Thatcher, R., Optimal single-channel service policies for stochastic arrivals (1968), OR Center, University of California: OR Center, University of California Berkeley, ORC-68-16
[22] Yechiali, U., On optimal balking rules and toll charges in the GI/M/1 queuing process, Opns. Res., 19, 349-370 (1971) · Zbl 0227.60054
[23] Yechiali, U., Customer’s optimal joining rules for GI/M/S queue, Mgmt. Sci., 18, 434-443 (1972) · Zbl 0239.60093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.