×

The finite element method for ill-posed problems. (English) Zbl 0369.65012


MSC:

65J05 General theory of numerical analysis in abstract spaces
65R20 Numerical methods for integral equations

References:

[1] 1. A. K. AZIZ and I. BABUSKA, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. Zbl0268.65052 MR421106 · Zbl 0268.65052
[2] 2. I. CEA, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. Zbl0211.17402 MR298892 · Zbl 0211.17402
[3] 3. J. N. FRANKLIN. On Tikhonov’s Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 Zbl0297.65053 MR375817 · Zbl 0297.65053 · doi:10.2307/2005354
[4] 4. B. GUENTHER, E. K. KILLIAN, K. T. SMITH and S. L. WAGNER, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. MR354065
[5] 5. L. L. LIONS et E. MAGNES, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. Zbl0165.10801 · Zbl 0165.10801
[6] 6. D. LUDWIG, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. Zbl0134.11305 MR190652 · Zbl 0134.11305 · doi:10.1002/cpa.3160190207
[7] 7. R. MITTRA and C. A. KLEIN, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975.
[8] 8. D. L. PHILIPPS. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. Zbl0108.29902 MR134481 · Zbl 0108.29902 · doi:10.1145/321105.321114
[9] 9. G. RIBIÈRE, Régularisation d’opérateurs. R.I.R.O., 1, 1967, p. 57-79. Zbl0184.37003 MR224267 · Zbl 0184.37003
[10] 10. A. N. TIKHONOV, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. Zbl0183.11601 · Zbl 0183.11601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.