zbMATH — the first resource for mathematics

Subrekursive Komplexität bei Gruppen. II: Der Einbettungssatz von Higman für entscheidbare Gruppen. (German) Zbl 0371.02020

03D40 Word problems, etc. in computability and recursion theory
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
68Q25 Analysis of algorithms and problem complexity
Full Text: DOI
[1] Aanderaa, S.: A proof of Higman’s embedding theorem, using Britton extension of groups. In: Word problems (W.W. Boone, F.B. Cannonito, R. Lyndon, eds.), pp. 1-17. Amsterdam-London: North Holland 1975
[2] Avenhaus, J., Madlener, K.: Subrekursive Komplexität bei Gruppen. I. Gruppen mit vorgeschriebener Komplexität. Acta Informat. 9, 87-104 (1977) · Zbl 0371.02019 · doi:10.1007/BF00263767
[3] Gatterdam, R.W.: The computability of group constructions II. Bull. Austral. Math. Soc. 8, 27-60 (1973) · Zbl 0243.02036 · doi:10.1017/S0004972700045469
[4] Higman, G.: Subgroups of finitely presented groups. Proc. Roy. Soc. London Ser. A 262, 455-475 (1961) · Zbl 0104.02101 · doi:10.1098/rspa.1961.0132
[5] Machtey, M.: On the density of honest subrecursive classes. J. Comput. System Sci. 10, 183-199 (1975) · Zbl 0336.02031 · doi:10.1016/S0022-0000(75)80039-0
[6] Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comput. System Sci, 12, 147-178 (1976) · Zbl 0329.68049 · doi:10.1016/S0022-0000(76)80035-9
[7] Rotman, J.J.: The theory of groups, 2nd ed. Boston: Allyn & Bacon 1973 · Zbl 0262.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.