Brillhart, John; Morton, Patrick Über Summen von Rudin-Shapiroschen Koeffizienten. (German) Zbl 0371.10009 Ill. J. Math. 22, 126-148 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 9 Documents MSC: 11B37 Recurrences 11B39 Fibonacci and Lucas numbers and polynomials and generalizations 33E99 Other special functions PDF BibTeX XML Cite \textit{J. Brillhart} and \textit{P. Morton}, Ill. J. Math. 22, 126--148 (1978; Zbl 0371.10009) OpenURL Online Encyclopedia of Integer Sequences: a(n) = n-th partial sum of Golay-Rudin-Shapiro sequence A020985. a(n) = (5*4^n - 2)/3. a(n) = Sum_{k=0..n} (-1)^k*A020985(k). Triangle read by rows: row n gives positions where n occurs in the Golay-Rudin-Shapiro related sequence A020986. Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k.