Masser, D. W. The transcendence of certain quasi-periods associated with Abelian functions in two variables. (English) Zbl 0371.10026 Compos. Math. 35, 239-258 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 7 Documents MSC: 11J81 Transcendence (general theory) 14K25 Theta functions and abelian varieties 32A20 Meromorphic functions of several complex variables 33E05 Elliptic functions and integrals × Cite Format Result Cite Review PDF Full Text: Numdam EuDML References: [1] A. Baker : On the quasi-periods of the Weierstrass \zeta -function . Göttinger Nachr. (1969) No. 16, 145-157. · Zbl 0201.05403 [2] N.I. Feldman : Estimate for a linear form in logarithms of algebraic numbers . Mat. Sbornik 76 (1968) 304-319 (Math. USSR Sbornik 5 (1968) 291-307). · Zbl 0195.33701 · doi:10.1070/SM1968v005n02ABEH001007 [3] S. Lang : Transcendental points on group varieties . Topology 1 (1962) 313-318. · Zbl 0116.38105 · doi:10.1016/0040-9383(62)90018-6 [4] D.W. Masser : Elliptic functions and transcendence . Springer Lecture Notes in Math. No. 437, Berlin, 1975. · Zbl 0312.10023 [5] D.W. Masser : Linear forms in algebraic points of Abelian functions I . Math. Proc. Cambridge Philos. Soc. 77 (1975) 499-513. · Zbl 0306.14018 · doi:10.1017/S030500410005132X [6] D.W. Masser : On the periods of Abelian functions in two variables . Mathematika 22 (1975) 97-107. · Zbl 0318.14010 · doi:10.1112/S0025579300005933 [7] D.W. Masser : Some vector spaces associated with two elliptic functions, to appear in Transcendence theory advances and applications . Academic Press, London and New York, 1977. · Zbl 0362.10029 [8] Th. Schneider : Zur Theorie der Abelschen Funktionen und Integrale . J. reine angew. Math. 183 (1941) 110-128. · Zbl 0024.15504 · doi:10.1515/crll.1941.183.110 [9] C.L. Siegel : Topics in complex function theory , Vol. III. Wiley-Interscience, New York, 1973. · Zbl 0184.11201 [10] M. Waldschmidt : Nombres transcendants . Springer Lecture Notes in Math. 402, 1974. · Zbl 0302.10030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.