×

zbMATH — the first resource for mathematics

On the dimension of left invariant means and left thick subsets. (English) Zbl 0371.43005

MSC:
43A07 Means on groups, semigroups, etc.; amenable groups
20M10 General structure theory for semigroups
16Nxx Radicals and radical properties of associative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ching Chou, Minimal sets and ergodic measures for \?\?\?, Illinois J. Math. 13 (1969), 777 – 788. · Zbl 0179.35603
[2] Ching Chou, On the size of the set of left invariant means on a semi-group, Proc. Amer. Math. Soc. 23 (1969), 199 – 205. · Zbl 0188.19006
[3] Ching Chou, The exact cardinality of the set of invariant means on a group, Proc. Amer. Math. Soc. 55 (1976), no. 1, 103 – 106. · Zbl 0319.43006
[4] Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847 – 870. · Zbl 0119.10903
[5] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509 – 544. · Zbl 0078.29402
[6] Lonnie Fairchild, Extreme invariant means without minimal support, Trans. Amer. Math. Soc. 172 (1972), 83 – 93. · Zbl 0227.43002
[7] E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32 – 48. · Zbl 0113.09801
[8] Edmond Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367 – 379. · Zbl 0144.38202
[9] E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177 – 197. · Zbl 0136.27202
[10] E. Granirer and M. Rajagopalan, A note on the radical of the second conjugate algebra of a semigroup algebra, Math. Scand. 15 (1964), 163 – 166. · Zbl 0168.11404
[11] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. 1, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. · Zbl 0115.10603
[12] Indar S. Luthar, Uniqueness of the invariant mean on an abelian semigroup, Illinois J. Math. 3 (1959), 28 – 44. · Zbl 0088.32601
[13] Theodore Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc. 119 (1965), 244 – 261. · Zbl 0146.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.