×

zbMATH — the first resource for mathematics

Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality. (English) Zbl 0371.65020

MSC:
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
49M25 Discrete approximations in optimal control
92B05 General biology and biomathematics
35K05 Heat equation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. C. BAIOCCHI and G. A. Pozzi, An évolution variational inequality related toa diffusion-absorption problem, , Appl. Math, and Optim., 2, 1975-1976, pp. 304-314 Zbl0379.49014 MR430538 · Zbl 0379.49014
[2] 2. A. E. BERGER, The truncation method for the solution of a class of variationalinequalities, R.A.I.R.O. Anal. Numér., 10, 1976, pp. 29-42. Zbl0334.49012 MR455489 · Zbl 0334.49012 · eudml:193273
[3] 3. A. E. BERGER, M. CIMENT and J. C. W. ROGERS, Numerical solution ofa diffusionconsumption problem with a free boundary, S.I.A.M. Journ. Num. Anal., 12, 1975, pp. 646-672. Zbl0317.65032 MR383779 · Zbl 0317.65032 · doi:10.1137/0712049
[4] 4. H. BREZIS, Solutions with compact support of variational inequalities, Uspehi Mat. Nauk SSSR, Vol. 29, 2, 1974, pp. 103-106; English translation: Russian Math, Surveys, Vol. 29, 2, 1974, pp. 103-108. Zbl0304.35036 MR481460 · Zbl 0304.35036 · doi:10.1070/RM1974v029n02ABEH003845
[5] 5. H. BREZIS and A. FRIEDMAN, Estimates on the support of solution of parabolic variational inequalities, Illinois J. Math., Vol. 20, 1976, pp. 82-97. Zbl0316.35046 MR390501 · Zbl 0316.35046
[6] 6. J. CRANK, The Mathematics of Diffusion, 2nd éd., Clarendon Press, Oxford, 1975. Zbl0427.35035 MR359551 · Zbl 0427.35035
[7] 7. J. J. CRANK and R. S. GUPTA, A moving boundary problem arising from diffusion of oxygen in absorbing tissue, J. Inst. Math. Appl., Vol. 10, 1972, pp. 19-33. Zbl0247.65064 MR347105 · Zbl 0247.65064 · doi:10.1093/imamat/10.1.19
[8] 8. J. CRANK and R. S. GUPTA, A method for solving moving boundary problems in heat flow using cubic splines or polynomials, J. Inst. Math. Appl., Vol. 10, 1972, pp. 296-304. Zbl0299.65049 MR347105 · Zbl 0299.65049 · doi:10.1093/imamat/10.3.296
[9] 9. G. DUVAUT, Problèmes à frontière libre en théorie des milieux continus, I.R.I.A., Rapport de Recherche N^\circ 185, 1976.
[10] 10. G. DUVAUT and J. L. LIONS, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972; English transi.: Springer, Berlin, 1975. Zbl0298.73001 MR464857 · Zbl 0298.73001
[11] 11. A. FASANO and M. PRIMICERIO, General free-boundary problems for the heat equations; parts I, II, III, J. Math. Anal, and Appl., 57, 1977, pp. 694-723;58, 1977, pp. 202-231; 59, 1977, pp. 1-14. Zbl0355.35037 MR487017 · Zbl 0355.35037 · doi:10.1016/0022-247X(77)90239-6
[12] 12. A. FRIEDMAN, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal., Vol. 18, 1975, pp. 151-176. Zbl0295.35045 MR477461 · Zbl 0295.35045 · doi:10.1016/0022-1236(75)90022-1
[13] 13. E. HANSEN and P. HOUGAARD, Ona moving boundary problem from biomechanic, J. Inst. Maths. Appls, Vol. 13, 1974, pp. 385-398. Zbl0307.45016 · Zbl 0307.45016
[14] 14. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969. Zbl0189.40603 MR259693 · Zbl 0189.40603
[15] 15. J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes, Vol.I, II,III, Dunod, Paris, 1968-1970; English transi.: Springer, Berlin, 1972. · Zbl 0165.10801
[16] 16. J. L. LIONS and G. STAMPACCHIA, Variational inequalities, Comm. Pure Appl.Math., Vol. 20, 1967, pp. 493-519. Zbl0152.34601 MR216344 · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[17] 17. E. MAGENES, Topics in parabolic equations: some typical free boundary problems. Proc. of N.A.T.O. Advanced Study Inst. on Boundary value problems for evolution partial differential equations, Liège, September 1976. Zbl0366.35001 MR470497 · Zbl 0366.35001
[18] 18. M. PRIMICERIO, Problemi a contorno liberoper equazioni délia diffusione, Rend.Sem. Mat. Torino, 32, 1973-1974, pp. 183-206. Zbl0307.76048 MR477466 · Zbl 0307.76048
[19] 19. A. SCHATZ, Free boundary problems of Stefan type with prescribed flux, J. Math.Anal. Appl., Vol. 28, 1969, pp. 569-580. Zbl0271.35038 MR267285 · Zbl 0271.35038 · doi:10.1016/0022-247X(69)90009-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.