×

zbMATH — the first resource for mathematics

Irreducible representations of finite classical groups. (English) Zbl 0372.20033

MSC:
20G40 Linear algebraic groups over finite fields
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andrews, G.E.: Partitions,q-functions and the Lusztig-Macdonald-Wall conjectures, Inventiones math.41, 91-102 (1977) · Zbl 0354.20006 · doi:10.1007/BF01390165
[2] Benson, C.T., Gay, D.A.: On dimension functions of the generic algebra of typeD n , J. of Algebra,45, 435-438 (1977) · Zbl 0371.20036 · doi:10.1016/0021-8693(77)90335-0
[3] Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4,5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[4] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[5] Dye, R.: The simple groupFH (8, 2) of order 212\(\cdot\)35\(\cdot\)52\(\cdot\)7 and the associated geometry of triality. Proc. London Math. Soc. (3)18, 521-562 (1968) · Zbl 0159.31104 · doi:10.1112/plms/s3-18.3.521
[6] Enomoto, H.: The characters of the finite symplectic groupSp(4,q),q=2 f . Osaka J. Math.9, 75-94 (1972) · Zbl 0254.20005
[7] Frame, J.S., Rudvalis, A.: Characters of symplectic groups overF 2, Finite groups ’72. Proc. Gainesville Conf. p. 41-54. North Holland, Amsterdam 1973 · Zbl 0256.20008
[8] Harish-Chandra: Eisenstein series over finite fields. Funct. Analysis and Related Fields (ed. F.E. Browder). Berlin-Heidelberg-New York: Springer 1970 · Zbl 0226.20049
[9] Hardy, G.H., Wright, E.M.: The theory of numbers. Oxford: Clarendon Press 1971 · Zbl 0020.29201
[10] Hoefsmit, P.N.: Representations of Hecke algebras of finite groups withBN pairs of classical type, Thesis, Univ. of British Columbia, Vancouver 1974
[11] Kilmoyer, R.: Principal series representations of finite Chevalley groups (preprint, Clark University) · Zbl 0389.20008
[12] Langlands, R. P.: On the classification of irreducible representations of real algebraic groups, preprint, Institute for Advanced Study · Zbl 0741.22009
[13] Lusztig, G.: Classification des représentations irréductibles des groupes classiques finis. c. r. Acad. Sci. Paris. Sér. A,284, 473-475 (28 Fév. 1977) · Zbl 0352.20038
[14] Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius, Inventiones math.38, 101-159 (1976) · Zbl 0366.20031 · doi:10.1007/BF01408569
[15] Lusztig, G.: On the finiteness of the number of unipotent classes, Inventiones math.34, 201-213 (1976) · Zbl 0371.20039 · doi:10.1007/BF01403067
[16] Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups (to appear in the J. of Algebra) · Zbl 0384.20008
[17] Spaltenstein, N.: Sous-groupes de Borel contenant un unipotent donné (preprint, University of Warwick)
[18] Srinivasan, B.: The characters of the finite symplectic groupSp(4,q), Trans. Amer. math. Soc.131, 488-525 (1968) · Zbl 0213.30401
[19] Steinberg, R.: A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. math. Soc.71, 274-282 (1951) · Zbl 0045.30201 · doi:10.1090/S0002-9947-1951-0043784-0
[20] Wall, G. E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. math. Soc.3, 1-62 (1963) · Zbl 0122.28102 · doi:10.1017/S1446788700027622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.