Jones, P. R. Basis properties for inverse semigroups. (English) Zbl 0372.20048 J. Algebra 50, 135-152 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 14 Documents MSC: 20M10 General structure theory for semigroups 20M05 Free semigroups, generators and relations, word problems PDF BibTeX XML Cite \textit{P. R. Jones}, J. Algebra 50, 135--152 (1978; Zbl 0372.20048) Full Text: DOI OpenURL References: [1] Baer, R, Nilpotent groups and their generalizations, Trans. amer. math. soc., 47, 393-434, (1940) · JFM 66.0071.01 [2] Bechtell, H, Theory of groups, (1971), Addison-Wesley Reading, Mass · Zbl 0179.32203 [3] Clifford, A.H; Preston, G.B; Clifford, A.H; Preston, G.B, Algebraic theory of semigroups, () · Zbl 0111.03403 [4] {\scN. K. Dickson}, private correspondence. [5] Feit, W; Hall, M; Thompson, J.G, Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Z., 74, 1-17, (1960) · Zbl 0103.01402 [6] Feit, W; Thompson, J.G, Solvability of groups of odd order, Pacific J. math., 13, 775-1029, (1963) · Zbl 0124.26402 [7] Gorenstein, D, Finite groups, (1968), Harper and Row N.Y · Zbl 0185.05701 [8] Higman, G, Finite groups in which every element has prime power order, J. London math. soc., 32, 335-342, (1957) · Zbl 0079.03204 [9] Jones, P.R, A basis theorem for free inverse semigroups, J. algebra, 49, 172-190, (1977) · Zbl 0376.20034 [10] Robinson, D.J.S, Finiteness conditions and generalized soluble groups, (1972), Springer-Verlag Berlin, Part 2 · Zbl 0395.20020 [11] Scott, W, Group theory, (1964), Prentice-Hall New Jersey · Zbl 0126.04504 [12] Thompson, J.G, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. amer. math. soc., 74, 383-437, (1968) · Zbl 0159.30804 [13] Wilson, J.S, On periodic generalized nilpotent groups, Bull. London math. soc., 9, 81-85, (1977) · Zbl 0362.20027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.