×

zbMATH — the first resource for mathematics

Kirillov’s character formula for reductive Lie groups. (English) Zbl 0372.22011

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bernat, P., Conze, N., Duflo, M., Levy-Nahas, M., Rais, M., Renouard, P., Vergne, M.: Representations des Groupes de Lie Resolubles, Dunod, Paris, 1972
[2] Duflo, M.: Caracteres des groupes et des algebres de Lie resolubles, Ann. Sci. Ecole Norm. Sup.3, 23-74 (1970) · Zbl 0223.22016
[3] Duflo, M.: Fundamental-series representations of a semisimple Lie group, Functional Anal. Appl.4, 122-126 (1970) · Zbl 0254.22007 · doi:10.1007/BF01094488
[4] Gutkin, E.A.: Representations of the principal series of a complex semisimple Lie group. Functional Anal. Appl.4, 117-121 (1970) · Zbl 0225.22023 · doi:10.1007/BF01094487
[5] Harish-Chandra: Fourier transforms on a semisimple Lie algebra I, II, Amer. J. Math.79, 193-257, 653-686 (1957) · Zbl 0077.25205 · doi:10.2307/2372680
[6] Harish-Chandra: Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Etudes Sci. Publ. Math. No.27, 5-54 (1965) · Zbl 0199.46401 · doi:10.1007/BF02684374
[7] Harish-Chandra: Discrete series for semisimple Lie groups I, II, Acta Math.113, 241-318 (1965),116, 1-111 (1966) · Zbl 0152.13402 · doi:10.1007/BF02391779
[8] Harish-Chandra: Harmonic analysis on real reductive groups III, Annals of Math.104, 117-201 (1976) · Zbl 0331.22007 · doi:10.2307/1971058
[9] Kirillov, A.: Unitary representations of nilpotent Lie groups, Russian Math. Surveys17, 53-104 (1962) · Zbl 0106.25001 · doi:10.1070/RM1962v017n04ABEH004118
[10] Kirillov, A.: The characters of unitary representations of Lie groups, Functional Anal. Appl.2, 90-93, 133-146 (1968),3, 29-38 (1969) · Zbl 0194.33804 · doi:10.1007/BF01075365
[11] Lipsman, R.L.: Characters of Lie groups II, J. D’Analyse Math.31, 257-286 (1977) · Zbl 0351.22009 · doi:10.1007/BF02813305
[12] Rossmann, W.: Analysis on real hyperbolic spaces, J. of Functional Anal., in press (1978) · Zbl 0395.22014
[13] Strichartz, R.S.: Fourier transforms and non-compact rotation groups, Indiana U. Math. J.24, No. I 499-526 (1974) · Zbl 0295.42015 · doi:10.1512/iumj.1974.24.24037
[14] Varadarajan, V.S.: Harmonic Analysis on Real Reductive Lie Groups, Lecture Notes 576, Springer, New York, 1977 · Zbl 0354.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.