Contractivity of C. Neumann’s operator in potential theory. (English) Zbl 0372.31004


31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
Full Text: DOI


[1] Burago, Yu. D.; Mazja, V. G., Potential Theory and Function Theory for Irregular Regions, (Seminars in Mathematics, Vol. 3 (1969), V. A. Steklov Mathematical Institute: V. A. Steklov Mathematical Institute New York) · Zbl 0177.37502
[2] Federer, H., The Gauss-Green theorem, Trans. Amer. Math. Soc., 58, 44-76 (1945) · Zbl 0060.14102
[3] Kellog, O. D., Foundations of Potential Theory (1929), Springer: Springer Berlin, (reissued in 1953 by Dover Publications, New York)
[4] Kleinman, R. E.; Wendland, W. L., On Neumann’s method for the exterior Neumann problem for the Helmholtz equation, J. Math. Anal. Appl., 57, 170-202 (1977) · Zbl 0351.35022
[5] Král, J., The Fredholm method in potential theory, Trans. Amer. Math. Soc., 125, 511-547 (1966) · Zbl 0149.07906
[6] Lebesgue, H., Sur la méthode de Carl Neumann, J. Math. Pures Appl., \(9^e\) série, 16, 421-423 (1937) · Zbl 0017.35204
[7] Lebesgue, H., En marge du calcul des variations (Une introduction au calcul des variations et aux inégalités géométriques), (Monographie de l’Enseignement mathématique No. 12 (1963), Institut de mathématiques, Université de Génève) · Zbl 0136.09701
[8] Netuka, I., Fredholm radius of a potential theoretic operator for convex sets, Časopis Pěst. Mat., 100, 374-383 (1975) · Zbl 0314.31006
[9] Neumann, C., Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 22, 264-321 (1870) · JFM 03.0493.01
[10] Neumann, C., Untersuchungen über das logarithmische und Newtonsche Potential (1877), Teubner: Teubner Leipzig · JFM 10.0658.05
[11] Neumann, C., Über die Methode des arithmetischen Mittels (1888), V. A. Steklov Mathematical Institute: V. A. Steklov Mathematical Institute Leipzig, (zweite Abhandlung) · JFM 20.1015.01
[12] Plemelj, J., Potentialtheoretische Untersuchungen, (Preisschriften der Fürstlich Jablonowskischen Gesellschaft zu Leipzig (1911), Teubner: Teubner Leipzig) · JFM 42.0828.10
[13] Riesz, F.; Nagy, B. Sz, Leçons d’analyse fonctionnelle (1972), Akadémiai Kiadó: Akadémiai Kiadó Budapest · Zbl 0122.11205
[14] Schober, G., Neumann’s lemma, (Proc. Amer. Math. Soc., 19 (1968)), 306-311 · Zbl 0159.40601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.