On the convergence of the Godounov’s scheme for first order quasi linear equations. (English) Zbl 0372.35015


35F20 Nonlinear first-order PDEs
35D05 Existence of generalized solutions of PDE (MSC2000)
35A35 Theoretical approximation in context of PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] E. Conway and J. Smoller: Global solutions of the Cauchy problem for quasi-linear first order equations in several space variables. Comm. Pure Applied Math., 19, 95-105 (1966). · Zbl 0138.34701
[2] E. Hopf: On the right weak solution of the Cauchy problem for a quasi-linear equation of first order. J. Math. Mech., 19, 483-487 (1969). · Zbl 0188.16102
[3] S. N. Kruzkov: First order quasi-linear equations in several independant variables. Math. USSR Sbornik., 10, 217-243 (1970). · Zbl 0215.16203
[4] A. Y. Le Roux: Resolution numerique du probleme de Cauchy pour une equation quasilineaire du premier ordre a une ou plusieurs variables d’espaces. These de 3eme cycle-Rennes (1974).
[5] A. Y. Le Roux: a numerical conception of entropy for quasi-linear hyperbolic equations (to appear in Math. Comp.) · Zbl 0378.65053
[6] O. A. Oleinik: Discontinuous solutions of non linear differential equations. AMS transl. Ser. 2, n^\circ 26, pp. 95-172 (1963). · Zbl 0131.31803
[7] O. A. Oleinik: Uniqueness and Stability of the generalized solution of the Cauchy problem for a quasi-linear equation. AMS transl., Ser. 2, n^\circ 33, pp. 285-290 (1963). · Zbl 0132.33303
[8] R. D. Richtmyer and K. W. Morton: Difference Methods for Initial Value Probelms. J. Wiley (1967). · Zbl 0155.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.