×

Quantum dynamical semigroups and the neutron diffusion equation. (English) Zbl 0372.47020


MSC:

47D03 Groups and semigroups of linear operators
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46N99 Miscellaneous applications of functional analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chernoff, P.R., Proc. amer. math. soc., 33, 72, (1972)
[2] Davies, E.B., Commun. math. phys., 15, 277, (1969)
[3] Davies, E.B., Commun. math. phys., 22, 51, (1971)
[4] Davies, E.B., Commun. math. phys., 39, 91, (1974)
[5] Davies, E.B., Commun. math. phys., 49, 113, (1976)
[6] Davies, E.B., Quantum theory of open systems, (1976), Academic Press · Zbl 0388.46044
[7] Davies, E.B.; Eckmann, J.P., Helv. phys. acta, 48, 731, (1975)
[8] Davison, B.; Sykes, J.B., Neutron transport theory, (1958), Oxford University Press · Zbl 0077.22505
[9] D.E. Evans and J.T. Lewis: Dilations of dynamical semigroups (to appear). · Zbl 0402.46039
[10] Feller, W., An introduction to probability theory and its applications, Vol. 2, (1966), Wiley · Zbl 0138.10207
[11] Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G., J. math. phys., 17, 821, (1976)
[12] Hejtmanek, J., Commun. math. phys., 43, 109, (1975)
[13] Hepp, K., Commun. math. phys., 35, 265, (1974)
[14] Hepp, K.; Lieb, E.H., Helv. phys. acta, 46, 573, (1973)
[15] Hoegh-Krohn, R., J. math. phys., 10, 639, (1969)
[16] Kato, T., J. math. soc. Japan, 6, 1, (1954)
[17] Kato, T., Math. ann., 162, 258, (1966)
[18] Lindblad, G., Commun. math. phys., 48, 119, (1976)
[19] Martin, P.; Emch, G.G., Helv. phys. acta, 48, 59, (1975)
[20] Pulè, J., Commun. math. phys., 38, 241, (1974)
[21] Reed, M.; Simon, B., Methods of modern mathematical physics II, (1975), Academic Press · Zbl 0308.47002
[22] Simon, B., Commun. math. phys., 41, 99, (1975)
[23] Yosida, K., Functional analysis, (1965), Springer · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.