Greene, R. E.; Wu, H. \(C^\infty\) convex functions and manifolds of positive curvature. (English) Zbl 0372.53019 Acta Math. 137(1976), 209-245 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 71 Documents MSC: 53C20 Global Riemannian geometry, including pinching 58C05 Real-valued functions on manifolds × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Allendoerfer, C. B. &Weil, A., The Gauss-Bonnet theorem for Riemannian polyhedra.Trans. Amer. Math. Soc., 53 (1943), 101–129. · Zbl 0060.38102 · doi:10.1090/S0002-9947-1943-0007627-9 [2] Cartan, H., Quotients of complex analytic spaces. InContributions to Function Theory, Tata Institute, Bornbay, 1960, 1–15. [3] Cheeger, J. &Gromoll, D., On the structure of complete manifolds of nonnegative curvature.Ann. of Math., 96 (1972), 413–443. · Zbl 0246.53049 · doi:10.2307/1970819 [4] Chern, S. S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds.Ann. of Math., 45 (1944), 747–752. · Zbl 0060.38103 · doi:10.2307/1969302 [5] Cohn-Vossen, S., Kürzeste Wege und Totalkrümmung auf Flächen,Compositio Math., 2 (1935), 69–133. [6] Docquier, F. &Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannifaltigkeiten.Math. Ann., 140 (1960), 94–123. · Zbl 0095.28004 · doi:10.1007/BF01360084 [7] Geroch, R., Positive sectional curvature does not imply positive Gauss-Bonnet integrand. –Proc. Amer. Math. Soc., 54 (1976), 267–270. · Zbl 0325.53042 · doi:10.1090/S0002-9939-1976-0390961-8 [8] Grauert, H., On Levi’s problem and the imbedding of real analytic manifolds.Ann. of Math., 68 (1958), 460–472. · Zbl 0108.07804 · doi:10.2307/1970257 [9] Greene, R. E. &Wu, H., Curvature and Complex analysisBull. Amer. Math. Soc. 77 (1971), 1045–1049: II, ibid., 78 (1972), 866–870; III, ibid., 79 (1973), 606–608. · Zbl 0225.32010 · doi:10.1090/S0002-9904-1971-12856-2 [10] –, On the subharmonicity and plurisubharmonicity of geodesically convex functions,Indiana Univ. Math. J., 22 (1973), 641–653. · Zbl 0235.53039 · doi:10.1512/iumj.1973.22.22052 [11] –, A theorem in geometric complex function theory. InValue Distribution Theory Part A, R. O. Kujala and A. L. Vitter, eds., Marcel Dekker, New York, 1974, 145–167. [12] –, Integrals of subharmonic functions on manifolds of nonnegative curvature.Inventiones Math., 27 (1974), 265–298. · Zbl 0342.31003 · doi:10.1007/BF01425500 [13] –, Approximation theorems,C convex exhaustions, and manifolds of positive curvature.Bull. Amer. Math. Soc., 81 (1975), 101–104. · Zbl 0307.53026 · doi:10.1090/S0002-9904-1975-13653-6 [14] Greene, R. E. Capproximations of convex, subharmonic, and plurisubharmonic functions. To appear. [15] Gromoll, D. &Meyer, W. T., On complete open manifolds of positive curvature.Ann. of Math., 90 (1969), 75–90. · Zbl 0191.19904 · doi:10.2307/1970682 [16] Gunning, R. C. &Rossi, H.,Analytic Functions of Several Variables, Prentice Hall, New Jersey, 1965. · Zbl 0141.08601 [17] Hörmander, L.,An Introduction to Complex Analysis in Several Variables. D. Van Nostrand, New Jersey, 1966. [18] Klembeck, P. F., On Geroch’s counterexample to the algebraic Hopf conjecture. To appear inProc. Amer. Math. Soc. · Zbl 0341.53011 [19] Milnor, J.,Morse Theory, Ann. of Math. Studies, No. 51, Princeton University Press, Princeton, 1963. [20] ,Lectures on the h-Cobordism Theorem. Princeton Mathematical Notes, Princeton Univ. Press, Princeton, 1965. · Zbl 0161.20302 [21] Munkres, J.,Elementary Differential Topology, Ann. of Math. Studies, No. 54, Princeton University Press, Princeton, 1963. · Zbl 0107.17201 [22] Narasimhan, R., The Levi problem for complex spaces II.Math. Ann., 146 (1962), 195–215. · Zbl 0131.30801 · doi:10.1007/BF01470950 [23] Poor, W. A., Some results on nonnegatively curved manifolds.J. Diff. Geom., 9 (1974), 583–600. · Zbl 0292.53037 [24] Portnoy, E., Towards a generalized Gauss-Bonnet formula for complete open manifolds,Comm. Math. Helv., 46 (1971), 324–344. · Zbl 0223.53041 · doi:10.1007/BF02566848 [25] Richberg, R., Stetige streng pseudoconvexe Functionen.Math. Ann., 175 (1968), 257–286. · Zbl 0153.15401 · doi:10.1007/BF02063212 [26] Rossi, H., Strongly pseudoconvex manifolds. InLectures in Modern Analysis and Applications I, C. T. Taam, ed., Lecture Notes in Mathematics, No. 103, Springer-Verlag, Berlin-New York, 1969, 10–29. [27] Simons, J., Minimal varieties in Riemannian manifolds.Ann. of Math., 88 (1968), 62–105. · Zbl 0181.49702 · doi:10.2307/1970556 [28] Walter, R., A generalized Allendoerfer-Weil formula and an inequality of the Cohn-Vossen type.J. Diff. Geom., 10 (1975), 167–180. · Zbl 0308.53042 [29] Yau, S. T., Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J., 25 1976, 659–670. · Zbl 0335.53041 · doi:10.1512/iumj.1976.25.25051 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.