×

zbMATH — the first resource for mathematics

Exit times of Brownian motion, harmonic majorization, and Hardy spaces. (English) Zbl 0372.60112

MSC:
60J65 Brownian motion
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
30D55 \(H^p\)-classes (MSC2000)
60G40 Stopping times; optimal stopping problems; gambling theory
31A35 Connections of harmonic functions with differential equations in two dimensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T.W, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, (), 170-176 · Zbl 0066.37402
[2] Baernstein, A, Integral means, univalent functions and circular symmetrization, Acta math., 133, 139-169, (1974) · Zbl 0315.30021
[3] Baernstein, A; Taylor, B.A, Spherical rearrangements, subharmonic functions, and ∗-functions in n-space, Duke math. J., 43, 245-268, (1976) · Zbl 0331.31002
[4] {\scC. Borell}, Undersökning av paraboliska mått, to appear.
[5] Burkholder, D.L, Distribution function inequalities for martingales, Ann. probability, 1, 19-42, (1973) · Zbl 0301.60035
[6] Burkholder, D.L, Hp spaces and exit times of Brownian motion, Bull. amer. math. soc., 81, 556-558, (1975) · Zbl 0321.60059
[7] Burkholder, D.L; Gundy, R.F, Extrapolation and interpolation of quasi-linear operators on martingales, Acta math., 124, 249-304, (1970) · Zbl 0223.60021
[8] Burkholder, D.L; Gundy, R.F; Silverstein, M.L, A maximal function characterization of the class Hp, Trans. amer. math. soc., 157, 137-153, (1971) · Zbl 0223.30048
[9] Doob, J.L, Stochastic processes, (1953), Wiley New York · Zbl 0053.26802
[10] Doob, J.L, Seminartingales and subharmonic functions, Trans. amer. math. soc., 77, 86-121, (1954) · Zbl 0059.12205
[11] Doob, J.L, Conformally invariant cluster value theory, Illinois J. math., 5, 521-549, (1961) · Zbl 0196.42201
[12] Duren, P.L, Theory of Hp spaces, (1970), Academic Press New York · Zbl 0215.20203
[13] Dynkin, E.B; Yushkevich, A.A, Markov processes: theorems and problems, (1969), Plenum New York · Zbl 0073.34801
[14] Erdélyi, A; Magnus, W; Oberhettinger, F; Tricomi, F.G, ()
[15] Haliste, K, Estimates of harmonic measures, Ark. mat., 6, 1-31, (1965) · Zbl 0178.13801
[16] Hansen, L.J, Hardy classes and ranges of functions, Michigan math. J., 17, 235-248, (1970) · Zbl 0189.08602
[17] Hansen, L.J, Boundary values and mapping properties of Hp functions, Math. Z., 128, 189-194, (1972) · Zbl 0242.30033
[18] Helms, L.L, Introduction to potential theory, (1969), Wiley-Interscíence New York · Zbl 0188.17203
[19] Helson, H; Sarason, D, Past and future, Math. scand., 21, 5-16, (1967) · Zbl 0241.60029
[20] Hunt, G.A, Some theorems concerning Brownian motion, Trans. amer. math. soc., 81, 294-319, (1956) · Zbl 0070.36601
[21] McKean, H.P, Stochastic integrals, (1969), Academic Press New York · Zbl 0191.46603
[22] Meyer, P.A, Probability and potentials, (1966), Blaisdell Waltham, Mass., · Zbl 0138.10401
[23] Neuwirth, J; Newman, D.J, Positive \(H\^{}\{12\}\) functions are constants, (), 958 · Zbl 0183.34304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.