Tables for the two-sample location E-test based on exceeding observations. (English) Zbl 0372.62100


62Q05 Statistical tables
Full Text: DOI EuDML


[1] T. Haga: A two-sample rank test on location. Ann. Inst. Statist. Math. 11 (1959/60), 211 - 219. · Zbl 0207.18503 · doi:10.1007/BF01682330
[2] J. Hájek Z. Šidák: Theory of rank tests. Academia, Prague & Academic Press, New York - London, 1967. · Zbl 0161.38102
[3] S. Rosenbaum: Tables for a nonparametric test of location. Ann. Math. Statist. 25 (1954), 146-150. · Zbl 0056.37602 · doi:10.1214/aoms/1177728854
[4] S. Rosenbaum: On some two-sample non-parametric tests. J. Amer. Statist. Assoc. 60 (1965), 1118-1126. · doi:10.1080/01621459.1965.10480855
[5] Z. Šidák S. Hojek: Monte Carlo comparisons of some rank tests optimal for uniform distributions. In Contributions to Statistics - J. Hájek Memorial Volume · Zbl 0422.62039
[6] Z. Šidák J. Vondráček: A simple non-parametric test of the difference in location of two populations. (in Czech.) Aplikace matematiky 2 (1957), 215 - 221.
[7] J. W. Tukey: A quick, compact, two-sample test to Duckworth’s specifications. Technometrics 1 (1959), 31-48.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.