×

zbMATH — the first resource for mathematics

Internal set theory: A new approach to nonstandard analysis. (English) Zbl 0373.02040

MSC:
03H99 Nonstandard models
03C99 Model theory
26A06 One-variable calculus
26E35 Nonstandard analysis
60A05 Axioms; other general questions in probability
60F15 Strong limit theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Paul J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966. · Zbl 0182.01301
[2] P. Erdös, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950), 127 – 141. · Zbl 0039.04902
[3] Charles N. Friedman, Perturbations of the Schroedinger equation by potentials with small support, J. Functional Analysis 10 (1972), 346 – 360. · Zbl 0235.35009
[4] Charles N. Friedman, Perturbations of the Schroedinger equation by potentials with small support, J. Functional Analysis 10 (1972), 346 – 360. · Zbl 0235.35009
[5] John Lamperti, Probability. A survey of the mathematical theory, W. A. Benjamin, Inc., New York-Amsterdam, 1966. · Zbl 0147.15502
[6] Azriel Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math. 10 (1960), 223 – 238. · Zbl 0201.32602
[7] W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Inte rnat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18 – 86.
[8] Elliott Mendelson, Introduction to mathematical logic, D. Van Nostrand Co., Inc., Princeton, N.J., 1964. · Zbl 0498.03001
[9] Albert Nijenhuis, Strong derivatives and inverse mappings, Amer. Math. Monthly 81 (1974), 969 – 980. · Zbl 0296.58002
[10] Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. · Zbl 0102.00708
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.