×

zbMATH — the first resource for mathematics

Invariant theory, Young bitableaux, and combinatorics. (English) Zbl 0373.05010

MSC:
05E10 Combinatorial aspects of representation theory
15A72 Vector and tensor algebra, theory of invariants
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Concini, C; Procesi, C, A characteristic free approach to invariant theory, Advances in math., 21, 330-354, (1976) · Zbl 0347.20025
[2] Doubilet, P; Rota, G.-C, Skew-symmetric invariant theory, Advances in math., 21, 196-201, (1976) · Zbl 0361.15024
[3] Doubilet, P; Rota, G.-C; Stein, J, On the foundations of combinatorial theory: IX. combinatorial methods in invariant theory, Stud. appl. math., 53, 185-216, (1974) · Zbl 0426.05009
[4] Weyl, H, The classical groups, (1946), Princeton Univ. Press Princeton, N.J · JFM 65.0058.02
[5] Whiteley, W, Logic and invariant theory. I: invariant theory of projective properties, Trans. amer. math. soc., 177, 121-139, (1973) · Zbl 0238.50002
[6] Désarménien, J; Rota, G.-C, Théorie combinatoire des invariants classiques, ()
[7] Mead, David G, Determinantal ideals, identities and the Wronskian, Pacific J. math., 42, 167-175, (1972) · Zbl 0244.13011
[8] Specht, W, Die irreduciblen darstellungen der symmetrische gruppe, Math. zeit., 39, 696-711, (1935) · JFM 61.0109.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.