×

zbMATH — the first resource for mathematics

The type of group measure space von Neumann algebras. (English) Zbl 0373.46076

MSC:
46L10 General theory of von Neumann algebras
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Algèbre, Chap. 3. Act. Sci. Ind. No. 1044. Paris: Hermann. 1958.
[2] Dixmier, J.: Algèbres quasi-unitaires. Comment. Math. Helv.26, 275-322 (1952). · Zbl 0047.35601 · doi:10.1007/BF02564306
[3] Dixmier, J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France81, 9-39 (1953). · Zbl 0050.11501
[4] Dixmier, J.: Les Algèbres d’Opérateurs dans l’Espace Hilbertien. 2nd Ed. Paris: Gauthiers-Villars. 1969.
[5] Effros, E., andF. Hahn: Locally compact transformation groups andC *-algebras. Amer. Math. Soc. Mem.75 (1967). · Zbl 0166.11802
[6] Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France92, 181-236 (1964). · Zbl 0169.46403
[7] Formanek, E.: The type I part of the regular representation. Can. J. Math.26, 1086-1089 (1974). · Zbl 0285.43013 · doi:10.4153/CJM-1974-100-8
[8] Golodets, V. Ya.: Crossed products of von Neumann algebras. Russ. Math. Surv.26, 1-50 (1971). · Zbl 0225.46062 · doi:10.1070/RM1971v026n05ABEH003832
[9] Halmos, P. R.: Ergodic Theory. New York: Chelsea. 1956. · Zbl 0073.09302
[10] Herstein, I. N.: Non-commutative Rings. Carus Math. Monographs No. 15 M.A.A., New York: J. Wiley. 1968. · Zbl 0177.05801
[11] Kaniuth, E.: Der Typ der regulären Darstellung diskreter Gruppen. Math. Ann.182, 334-339 (1969). · Zbl 0176.30102 · doi:10.1007/BF01350709
[12] Kaplansky, I.: Group algebras in the large. Tohôku Math. J.3, 249-256 (1951). · Zbl 0044.32803 · doi:10.2748/tmj/1178245477
[13] Nakamura, M., andZ. Takeda: On some elementary properties of the crossed products of von Neumann algebras. Proc. Japan Acad.34, 489-494 (1958). · Zbl 0085.09905 · doi:10.3792/pja/1195524559
[14] Rieffel, M. A.: Square-integrable representations of Hilbert algebras. J. Funct. Anal.3, 265-300 (1969). · Zbl 0174.44902 · doi:10.1016/0022-1236(69)90043-3
[15] Rieffel, M. A.: Strong Morita equivalence of certain transformation groupC *-algebras. Math. Ann.222, 7-22 (1976). · Zbl 0328.22013 · doi:10.1007/BF01418238
[16] Rieffel, M. A.: Commutation theorems and generalized commutation relations. Bull. Soc. Math. France104, 205-224 (1976). · Zbl 0345.43010
[17] Rieffel, M. A.: Von Neumann algebras associated with some discrete cocompact subgroups. (In preparation).
[18] Sakai, S.:C *-algebras andW *-algebras. New York-Heidelberg-Berlin: Springer. 1971. · Zbl 0219.46042
[19] Schlichting, G.: Eine Charakterisierung gewisser diskreter Gruppen durch ihre reguläre Darstellung. Manuscripta Math.9, 389-409 (1973). · Zbl 0258.43015 · doi:10.1007/BF01343878
[20] Smith, M.: Group algebras. J. Alg.18, 477-499 (1971). · Zbl 0219.20002 · doi:10.1016/0021-8693(71)90078-0
[21] Smith, M.: Regular representation of discrete groups. J. Funct. Anal.11, 401-406 (1972). · Zbl 0244.43004 · doi:10.1016/0022-1236(72)90062-6
[22] Smordinsky, M.: Ergodic Theory, Entropy. Berlin-Heidelberg-New York: Springer. 1971.
[23] Takesaki, M.: Covariant representations ofC *-algebras and their locally compact automorphism groups. Acta Math.119, 273-303 (1967). · Zbl 0163.36802 · doi:10.1007/BF02392085
[24] Takesaki, M.: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math.131, 249-310 (1973). · Zbl 0268.46058 · doi:10.1007/BF02392041
[25] Taylor, E. F.: The type structure of the regular representation of a locally compact group. Math. Ann.222, 211-224 (1976). · Zbl 0324.43009 · doi:10.1007/BF01362578
[26] Turumaru, T.: On crossed products of operator algebras. Tohôku Math. J.10, 355-365 (1958). · Zbl 0087.31803 · doi:10.2748/tmj/1178244669
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.