Fonctions de concentration sur certain groupes localement compacts. (French) Zbl 0373.60012


60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
Full Text: DOI


[1] Bhattacharya, R.N.: Speed of convergence of then-fold convolution of a probability measure on a compact group. Z. für Wahrscheinlichkeitstheorie verw. Gebiete25, 1-10 (1972) · Zbl 0247.60008
[2] Berg, C., Christensen, J.P.: Sur la norme des opérateurs de convolution. Invent. Math.23, 173-178 (1974) · Zbl 0267.22007
[3] Bougerol, P.: Fonctions de concentrations sur les extensions compactes de groupes abéliens. C.R. Acad. Sci. Paris283, 527-529 (1976) · Zbl 0368.60010
[4] Breiman, L.: Probability. Reading, Mass.: Addison-Wesley 1968
[5] Deriennic, Y., Guivarc’h,Y.: Théorème de renouvellement pour les groupes non moyennables. C.R. Acad. Sci. Paris277, 613 (1973)
[6] Essen, C.G.: On the Kolmogorov-Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie verw. Gebiete5, 210-216 (1966) · Zbl 0142.14702
[7] Guivarc’h, Y.: Croissance polynomiale et période des fonctions harmoniques. Bull. Soc. Math. France101, 333-379 (1973)
[8] Guivarc’h, Y., Keane, M., Roynette, B.: (A paraître dans Lecture Notes, Springer Verlag
[9] Hentgartner, W., Theodorescu, R.: Concentration functions. New York: Academic Press 1973
[10] Hochschild, G.: The structure of Lie Groups. San Francisco: Holden Day 1965 · Zbl 0131.02702
[11] Kesten, H.: Random difference equations and renewal theory for products of Random matrices. Acta Mathematika131, 207-248 (1973) · Zbl 0291.60029
[12] Kolmogorov, A.N.: Sur les propriétés des fonctions de concentration de M.P. Lévy. Ann. Inst. H. Poincaré Sect. B16, 27-34 (1958) · Zbl 0105.11804
[13] Neveu, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1970 · Zbl 0203.49901
[14] Ramsey, A.: Virtual groups and groups actions. Advances in Math.6 (1971)
[15] Revuz, D.: Markov chains. Amsterdam: North-Holland 1975 · Zbl 0332.60045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.