Fortin, Michel An analysis of the convergence of mixed finite element methods. (English) Zbl 0373.65055 RAIRO, Anal. Numér. 11, 341-354 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 99 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs PDF BibTeX XML Cite \textit{M. Fortin}, RAIRO, Anal. Numér. 11, 341--354 (1977; Zbl 0373.65055) Full Text: DOI EuDML OpenURL References: [1] 1. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problem arising from langrangian multipliers, R.A.I.R.O., vol. 8, août 1974, 2, pp. 129-151. Zbl0338.90047 MR365287 · Zbl 0338.90047 [2] 2. F. BREZZI and P. A. RAVIART, Mixed finite element methods for fourth order elliptic equations (to appear). Rapport interne No. 9, École polytechnique, Centre de Mathématiques Appliquées. · Zbl 0434.65085 [3] 3. M. CROUZEIX and P. A. RAVIART, Conforming and non conforming finite elements methods for solving the stationary Stoke equations, R.A.I.R.O., 3, 1974, pp. 33-76. Zbl0302.65087 · Zbl 0302.65087 [4] 4. M. FORTIN, Utilisation de la méthode des éléments finis en mécanique des fluides, CALCOLO, vol. XII, fasc. IV, pp. 405-441 and Vol. XII, fasc. 1, pp. 1-20. Zbl0351.76030 MR421339 · Zbl 0351.76030 [5] 5. C. JOHNSON, On the convergence of a mixed finite element method for plate bending problems, Num. Math., vol. 21, 1973, pp. 43-62. Zbl0264.65070 MR388807 · Zbl 0264.65070 [6] 6. J. T. ODEN, Some contributions to the mathematical theory of mixed finite element approximations, Tokyo Seminar on Finite Eléments, Tokyo, 1973. Zbl0374.65060 · Zbl 0374.65060 [7] 7. J. T. ODEN et J. N. REDDY, On mixed finite element approximations, Texas Institute or Computational Mechanics, The University of Texas at Austin, 1974. [8] 8. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems (to appear). Zbl0362.65089 · Zbl 0362.65089 [9] 9. K. YOSIDA, Functional analysis, Springer Verlag 1965. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.